1 code implementation • 9 Jul 2022 • Maxime Kayser, Cornelius Emde, Oana-Maria Camburu, Guy Parsons, Bartlomiej Papiez, Thomas Lukasiewicz
Most deep learning algorithms lack explanations for their predictions, which limits their deployment in clinical practice.
2 code implementations • ICCV 2021 • Maxime Kayser, Oana-Maria Camburu, Leonard Salewski, Cornelius Emde, Virginie Do, Zeynep Akata, Thomas Lukasiewicz
e-ViL is a benchmark for explainable vision-language tasks that establishes a unified evaluation framework and provides the first comprehensive comparison of existing approaches that generate NLEs for VL tasks.
1 code implementation • 7 Feb 2020 • Maxime Kayser, Roger D. Soberanis-Mukul, Anna-Maria Zvereva, Peter Klare, Nassir Navab, Shadi Albarqouni
We then investigated different strategies, such as a learning without forgetting framework, to leverage artifact knowledge to improve automated polyp detection.