no code implementations • 31 Jan 2023 • ZiHao Wang, Yingyu Yang, Maxime Sermesant, Hervé Delingette, Ona Wu
This paper proposes a new unsupervised zero-shot-learning method named Mutual Information guided Diffusion cross-modality data translation Model (MIDiffusion), which learns to translate the unseen source data to the target domain.
no code implementations • 21 Nov 2022 • ZiHao Wang, Yingyu Yang, Maxime Sermesant, Herve Delingette
In the meantime, recent studies show that the attention-based model (e. g., Transformer) can bring superior performance in pattern recognition tasks.
no code implementations • 17 Feb 2021 • Nicolas Guigui, Pamela Moceri, Maxime Sermesant, Xavier Pennec
In cases of pressure or volume overload, probing cardiac function may be difficult because of the interactions between shape and deformations. In this work, we use the LDDMM framework and parallel transport to estimate and reorient deformations of the right ventricle.
no code implementations • 2 Oct 2020 • Jaume Banus, Maxime Sermesant, Oscar Camara, Marco Lorenzi
To tackle this problem we introduce a probabilistic framework for joint cardiac data imputation and personalisation of cardiovascular mechanistic models, with application to brain studies with incomplete heart data.
no code implementations • 22 Jun 2020 • Xiahai Zhuang, Jiahang Xu, Xinzhe Luo, Chen Chen, Cheng Ouyang, Daniel Rueckert, Victor M. Campello, Karim Lekadir, Sulaiman Vesal, Nishant Ravikumar, Yashu Liu, Gongning Luo, Jingkun Chen, Hongwei Li, Buntheng Ly, Maxime Sermesant, Holger Roth, Wentao Zhu, Jiexiang Wang, Xinghao Ding, Xinyue Wang, Sen yang, Lei LI
In addition, the paired MS-CMR images could enable algorithms to combine the complementary information from the other sequences for the segmentation of LGE CMR.
no code implementations • 26 Apr 2020 • Zhaohan Xiong, Qing Xia, Zhiqiang Hu, Ning Huang, Cheng Bian, Yefeng Zheng, Sulaiman Vesal, Nishant Ravikumar, Andreas Maier, Xin Yang, Pheng-Ann Heng, Dong Ni, Caizi Li, Qianqian Tong, Weixin Si, Elodie Puybareau, Younes Khoudli, Thierry Geraud, Chen Chen, Wenjia Bai, Daniel Rueckert, Lingchao Xu, Xiahai Zhuang, Xinzhe Luo, Shuman Jia, Maxime Sermesant, Yashu Liu, Kuanquan Wang, Davide Borra, Alessandro Masci, Cristiana Corsi, Coen de Vente, Mitko Veta, Rashed Karim, Chandrakanth Jayachandran Preetha, Sandy Engelhardt, Menyun Qiao, Yuanyuan Wang, Qian Tao, Marta Nunez-Garcia, Oscar Camara, Nicolo Savioli, Pablo Lamata, Jichao Zhao
Segmentation of cardiac images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) widely used for visualizing diseased cardiac structures, is a crucial first step for clinical diagnosis and treatment.
no code implementations • 6 Dec 2018 • Shuman Jia, Antoine Despinasse, ZiHao Wang, Hervé Delingette, Xavier Pennec, Pierre Jaïs, Hubert Cochet, Maxime Sermesant
In this preliminary study, we propose automated, two-stage, three-dimensional U-Nets with convolutional neural network, for the challenging task of left atrial segmentation.