Search Results for author: Maxwell D. Collins

Found 17 papers, 7 papers with code

DeepLab2: A TensorFlow Library for Deep Labeling

4 code implementations17 Jun 2021 Mark Weber, Huiyu Wang, Siyuan Qiao, Jun Xie, Maxwell D. Collins, Yukun Zhu, Liangzhe Yuan, Dahun Kim, Qihang Yu, Daniel Cremers, Laura Leal-Taixe, Alan L. Yuille, Florian Schroff, Hartwig Adam, Liang-Chieh Chen

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a state-of-the-art and easy-to-use TensorFlow codebase for general dense pixel prediction problems in computer vision.

Naive-Student: Leveraging Semi-Supervised Learning in Video Sequences for Urban Scene Segmentation

1 code implementation ECCV 2020 Liang-Chieh Chen, Raphael Gontijo Lopes, Bowen Cheng, Maxwell D. Collins, Ekin D. Cubuk, Barret Zoph, Hartwig Adam, Jonathon Shlens

We view this work as a notable step towards building a simple procedure to harness unlabeled video sequences and extra images to surpass state-of-the-art performance on core computer vision tasks.

Image Segmentation Optical Flow Estimation +4

Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation

9 code implementations CVPR 2020 Bowen Cheng, Maxwell D. Collins, Yukun Zhu, Ting Liu, Thomas S. Huang, Hartwig Adam, Liang-Chieh Chen

In this work, we introduce Panoptic-DeepLab, a simple, strong, and fast system for panoptic segmentation, aiming to establish a solid baseline for bottom-up methods that can achieve comparable performance of two-stage methods while yielding fast inference speed.

Ranked #6 on Panoptic Segmentation on Cityscapes test (using extra training data)

Decoder Instance Segmentation +2

SegSort: Segmentation by Discriminative Sorting of Segments

1 code implementation ICCV 2019 Jyh-Jing Hwang, Stella X. Yu, Jianbo Shi, Maxwell D. Collins, Tien-Ju Yang, Xiao Zhang, Liang-Chieh Chen

The proposed SegSort further produces an interpretable result, as each choice of label can be easily understood from the retrieved nearest segments.

Ranked #10 on Unsupervised Semantic Segmentation on PASCAL VOC 2012 val (using extra training data)

Clustering Metric Learning +2

Panoptic-DeepLab

2 code implementations10 Oct 2019 Bowen Cheng, Maxwell D. Collins, Yukun Zhu, Ting Liu, Thomas S. Huang, Hartwig Adam, Liang-Chieh Chen

The semantic segmentation branch is the same as the typical design of any semantic segmentation model (e. g., DeepLab), while the instance segmentation branch is class-agnostic, involving a simple instance center regression.

Decoder Instance Segmentation +3

Tensorize, Factorize and Regularize: Robust Visual Relationship Learning

no code implementations CVPR 2018 Seong Jae Hwang, Sathya N. Ravi, Zirui Tao, Hyunwoo J. Kim, Maxwell D. Collins, Vikas Singh

Visual relationships provide higher-level information of objects and their relations in an image – this enables a semantic understanding of the scene and helps downstream applications.

Relational Reasoning Relationship Detection +1

A Deterministic Nonsmooth Frank Wolfe Algorithm with Coreset Guarantees

no code implementations22 Aug 2017 Sathya N. Ravi, Maxwell D. Collins, Vikas Singh

We present a new Frank-Wolfe (FW) type algorithm that is applicable to minimization problems with a nonsmooth convex objective.

Spatially Adaptive Computation Time for Residual Networks

1 code implementation CVPR 2017 Michael Figurnov, Maxwell D. Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry Vetrov, Ruslan Salakhutdinov

This paper proposes a deep learning architecture based on Residual Network that dynamically adjusts the number of executed layers for the regions of the image.

Classification Computational Efficiency +7

Coupled Harmonic Bases for Longitudinal Characterization of Brain Networks

no code implementations CVPR 2016 Seong Jae Hwang, Nagesh Adluru, Maxwell D. Collins, Sathya N. Ravi, Barbara B. Bendlin, Sterling C. Johnson, Vikas Singh

There is a great deal of interest in using large scale brain imaging studies to understand how brain connectivity evolves over time for an individual and how it varies over different levels/quantiles of cognitive function.

A Projection Free Method for Generalized Eigenvalue Problem With a Nonsmooth Regularizer

no code implementations ICCV 2015 Seong Jae Hwang, Maxwell D. Collins, Sathya N. Ravi, Vamsi K. Ithapu, Nagesh Adluru, Sterling C. Johnson, Vikas Singh

Eigenvalue problems are ubiquitous in computer vision, covering a very broad spectrum of applications ranging from estimation problems in multi-view geometry to image segmentation.

Image Segmentation Semantic Segmentation +1

Efficient non-greedy optimization of decision trees

no code implementations NeurIPS 2015 Mohammad Norouzi, Maxwell D. Collins, Matthew Johnson, David J. Fleet, Pushmeet Kohli

In this paper, we present an algorithm for optimizing the split functions at all levels of the tree jointly with the leaf parameters, based on a global objective.

Structured Prediction

CO2 Forest: Improved Random Forest by Continuous Optimization of Oblique Splits

no code implementations19 Jun 2015 Mohammad Norouzi, Maxwell D. Collins, David J. Fleet, Pushmeet Kohli

We develop a convex-concave upper bound on the classification loss for a one-level decision tree, and optimize the bound by stochastic gradient descent at each internal node of the tree.

General Classification Multi-class Classification

Memory Bounded Deep Convolutional Networks

no code implementations3 Dec 2014 Maxwell D. Collins, Pushmeet Kohli

In this work, we investigate the use of sparsity-inducing regularizers during training of Convolution Neural Networks (CNNs).

Cannot find the paper you are looking for? You can Submit a new open access paper.