1 code implementation • 11 Jan 2025 • Muru Zhang, Mayank Mishra, Zhongzhu Zhou, William Brandon, Jue Wang, Yoon Kim, Jonathan Ragan-Kelley, Shuaiwen Leon Song, Ben Athiwaratkun, Tri Dao
Our insight is that in addition to systems optimization, one can also redesign the model architecture to decouple communication from computation.
no code implementations • 7 Sep 2024 • Sonam Gupta, Yatin Nandwani, Asaf Yehudai, Mayank Mishra, Gaurav Pandey, Dinesh Raghu, Sachindra Joshi
The results show that standard SFT can lead to an average performance drop of up to $16. 7\%$ on multiple benchmarks, such as MMLU and TruthfulQA.
1 code implementation • 23 Aug 2024 • Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad, Adriana Meza Soria, David D. Cox, Rameswar Panda
This is not only because there is a complicated correlation between learning rate, batch size, number of training tokens, model size, and other hyperparameters but also because it is prohibitively expensive to perform a hyperparameter search for large language models with Billions or Trillions of parameters.
1 code implementation • 18 Jul 2024 • Matt Stallone, Vaibhav Saxena, Leonid Karlinsky, Bridget McGinn, Tim Bula, Mayank Mishra, Adriana Meza Soria, Gaoyuan Zhang, Aditya Prasad, Yikang Shen, Saptha Surendran, Shanmukha Guttula, Hima Patel, Parameswaran Selvam, Xuan-Hong Dang, Yan Koyfman, Atin Sood, Rogerio Feris, Nirmit Desai, David D. Cox, Ruchir Puri, Rameswar Panda
This paper introduces long-context Granite code models that support effective context windows of up to 128K tokens.
no code implementations • 12 Jul 2024 • Achintya Kundu, Rhui Dih Lee, Laura Wynter, Raghu Kiran Ganti, Mayank Mishra
Padding is often used in tuning LLM models by adding special tokens to shorter training examples to match the length of the longest sequence in each batch.
1 code implementation • 7 Jul 2024 • Talia Gershon, Seetharami Seelam, Brian Belgodere, Milton Bonilla, Lan Hoang, Danny Barnett, I-Hsin Chung, Apoorve Mohan, Ming-Hung Chen, Lixiang Luo, Robert Walkup, Constantinos Evangelinos, Shweta Salaria, Marc Dombrowa, Yoonho Park, Apo Kayi, Liran Schour, Alim Alim, Ali Sydney, Pavlos Maniotis, Laurent Schares, Bernard Metzler, Bengi Karacali-Akyamac, Sophia Wen, Tatsuhiro Chiba, Sunyanan Choochotkaew, Takeshi Yoshimura, Claudia Misale, Tonia Elengikal, Kevin O Connor, Zhuoran Liu, Richard Molina, Lars Schneidenbach, James Caden, Christopher Laibinis, Carlos Fonseca, Vasily Tarasov, Swaminathan Sundararaman, Frank Schmuck, Scott Guthridge, Jeremy Cohn, Marc Eshel, Paul Muench, Runyu Liu, William Pointer, Drew Wyskida, Bob Krull, Ray Rose, Brent Wolfe, William Cornejo, John Walter, Colm Malone, Clifford Perucci, Frank Franco, Nigel Hinds, Bob Calio, Pavel Druyan, Robert Kilduff, John Kienle, Connor McStay, Andrew Figueroa, Matthew Connolly, Edie Fost, Gina Roma, Jake Fonseca, Ido Levy, Michele Payne, Ryan Schenkel, Amir Malki, Lion Schneider, Aniruddha Narkhede, Shekeba Moshref, Alexandra Kisin, Olga Dodin, Bill Rippon, Henry Wrieth, John Ganci, Johnny Colino, Donna Habeger-Rose, Rakesh Pandey, Aditya Gidh, Dennis Patterson, Samsuddin Salmani, Rambilas Varma, Rumana Rumana, Shubham Sharma, Aditya Gaur, Mayank Mishra, Rameswar Panda, Aditya Prasad, Matt Stallone, Gaoyuan Zhang, Yikang Shen, David Cox, Ruchir Puri, Dakshi Agrawal, Drew Thorstensen, Joel Belog, Brent Tang, Saurabh Kumar Gupta, Amitabha Biswas, Anup Maheshwari, Eran Gampel, Jason Van Patten, Matthew Runion, Sai Kaki, Yigal Bogin, Brian Reitz, Steve Pritko, Shahan Najam, Surya Nambala, Radhika Chirra, Rick Welp, Frank DiMitri, Felipe Telles, Amilcar Arvelo, King Chu, Ed Seminaro, Andrew Schram, Felix Eickhoff, William Hanson, Eric Mckeever, Michael Light, Dinakaran Joseph, Piyush Chaudhary, Piyush Shivam, Puneet Chaudhary, Wesley Jones, Robert Guthrie, Chris Bostic, Rezaul Islam, Steve Duersch, Wayne Sawdon, John Lewars, Matthew Klos, Michael Spriggs, Bill McMillan, George Gao, Ashish Kamra, Gaurav Singh, Marc Curry, Tushar Katarki, Joe Talerico, Zenghui Shi, Sai Sindhur Malleni, Erwan Gallen
This infrastructure includes (1) Vela: an AI-optimized supercomputing capability directly integrated into the IBM Cloud, delivering scalable, dynamic, multi-tenant and geographically distributed infrastructure for large-scale model training and other AI workflow steps and (2) Blue Vela: a large-scale, purpose-built, on-premises hosting environment that is optimized to support our largest and most ambitious AI model training tasks.
2 code implementations • 21 May 2024 • William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, Jonathan Ragan Kelly
MQA and GQA both modify the design of the attention block so that multiple query heads can share a single key/value head, reducing the number of distinct key/value heads by a large factor while only minimally degrading accuracy.
2 code implementations • 7 May 2024 • Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, Adriana Meza Soria, Michele Merler, Parameswaran Selvam, Saptha Surendran, Shivdeep Singh, Manish Sethi, Xuan-Hong Dang, Pengyuan Li, Kun-Lung Wu, Syed Zawad, Andrew Coleman, Matthew White, Mark Lewis, Raju Pavuluri, Yan Koyfman, Boris Lublinsky, Maximilien de Bayser, Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal, Yi Zhou, Chris Johnson, Aanchal Goyal, Hima Patel, Yousaf Shah, Petros Zerfos, Heiko Ludwig, Asim Munawar, Maxwell Crouse, Pavan Kapanipathi, Shweta Salaria, Bob Calio, Sophia Wen, Seetharami Seelam, Brian Belgodere, Carlos Fonseca, Amith Singhee, Nirmit Desai, David D. Cox, Ruchir Puri, Rameswar Panda
Increasingly, code LLMs are being integrated into software development environments to improve the productivity of human programmers, and LLM-based agents are beginning to show promise for handling complex tasks autonomously.
no code implementations • 8 Apr 2024 • Bowen Pan, Yikang Shen, Haokun Liu, Mayank Mishra, Gaoyuan Zhang, Aude Oliva, Colin Raffel, Rameswar Panda
Mixture-of-Experts (MoE) language models can reduce computational costs by 2-4$\times$ compared to dense models without sacrificing performance, making them more efficient in computation-bounded scenarios.
1 code implementation • 4 Apr 2024 • Aniruddha Nrusimha, Mayank Mishra, Naigang Wang, Dan Alistarh, Rameswar Panda, Yoon Kim
We show that regularizing both the inputs and outputs is crucial for preventing a model's "migrating" the difficulty in input quantization to the weights, which makes post-training quantization (PTQ) of weights more difficult.
2 code implementations • 3 Apr 2024 • Harsh Rangwani, Pradipto Mondal, Mayank Mishra, Ashish Ramayee Asokan, R. Venkatesh Babu
In DeiT-LT, we introduce an efficient and effective way of distillation from CNN via distillation DIST token by using out-of-distribution images and re-weighting the distillation loss to enhance focus on tail classes.
Ranked #1 on
Image Classification
on iNaturalist
(Overall metric)
no code implementations • 30 Mar 2024 • Taishi Nakamura, Mayank Mishra, Simone Tedeschi, Yekun Chai, Jason T Stillerman, Felix Friedrich, Prateek Yadav, Tanmay Laud, Vu Minh Chien, Terry Yue Zhuo, Diganta Misra, Ben Bogin, Xuan-Son Vu, Marzena Karpinska, Arnav Varma Dantuluri, Wojciech Kusa, Tommaso Furlanello, Rio Yokota, Niklas Muennighoff, Suhas Pai, Tosin Adewumi, Veronika Laippala, Xiaozhe Yao, Adalberto Junior, Alpay Ariyak, Aleksandr Drozd, Jordan Clive, Kshitij Gupta, Liangyu Chen, Qi Sun, Ken Tsui, Noah Persaud, Nour Fahmy, Tianlong Chen, Mohit Bansal, Nicolo Monti, Tai Dang, Ziyang Luo, Tien-Tung Bui, Roberto Navigli, Virendra Mehta, Matthew Blumberg, Victor May, Huu Nguyen, Sampo Pyysalo
Despite these efforts, such models encounter challenges such as limited multilingual capabilities, risks of catastrophic forgetting during continual pretraining, and the high costs of training models from scratch, alongside the need to align with AI safety standards and regulatory frameworks.
4 code implementations • 29 Feb 2024 • Anton Lozhkov, Raymond Li, Loubna Ben allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, Harm de Vries
Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size.
Ranked #35 on
Code Generation
on MBPP
no code implementations • 4 Feb 2024 • Gaurav Pandey, Yatin Nandwani, Tahira Naseem, Mayank Mishra, Guangxuan Xu, Dinesh Raghu, Sachindra Joshi, Asim Munawar, Ramón Fernandez Astudillo
Distribution matching methods for language model alignment such as Generation with Distributional Control (GDC) and Distributional Policy Gradient (DPG) have not received the same level of attention in reinforcement learning from human feedback (RLHF) as contrastive methods such as Sequence Likelihood Calibration (SLiC), Direct Preference Optimization (DPO) and its variants.
no code implementations • CVPR 2024 • Harsh Rangwani, Pradipto Mondal, Mayank Mishra, Ashish Ramayee Asokan, R. Venkatesh Babu
In DeiT-LT we introduce an efficient and effective way of distillation from CNN via distillation \texttt DIST token by using out-of-distribution images and re-weighting the distillation loss to enhance focus on tail classes.
2 code implementations • 19 May 2023 • Mayank Mishra, Prince Kumar, Riyaz Bhat, Rudra Murthy V, Danish Contractor, Srikanth Tamilselvam
Prompting with natural language instructions has recently emerged as a popular method of harnessing the capabilities of large language models.
4 code implementations • 9 May 2023 • Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, Harm de Vries
The BigCode community, an open-scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs), introduces StarCoder and StarCoderBase: 15. 5B parameter models with 8K context length, infilling capabilities and fast large-batch inference enabled by multi-query attention.
Ranked #53 on
Code Generation
on MBPP
7 code implementations • 9 Jan 2023 • Loubna Ben allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra
The BigCode project is an open-scientific collaboration working on the responsible development of large language models for code.
1 code implementation • 28 Dec 2022 • Harsh Rangwani, Sumukh K Aithal, Mayank Mishra, R. Venkatesh Babu
Real-world datasets exhibit imbalances of varying types and degrees.
Ranked #1 on
Long-tail Learning
on CIFAR-10-LT (ρ=50)
7 code implementations • 9 Nov 2022 • BigScience Workshop, :, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, Dragomir Radev, Eduardo González Ponferrada, Efrat Levkovizh, Ethan Kim, Eyal Bar Natan, Francesco De Toni, Gérard Dupont, Germán Kruszewski, Giada Pistilli, Hady Elsahar, Hamza Benyamina, Hieu Tran, Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar Gonzalez-Dios, Javier de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg, Joseph Tobing, Joydeep Bhattacharjee, Khalid Almubarak, Kimbo Chen, Kyle Lo, Leandro von Werra, Leon Weber, Long Phan, Loubna Ben allal, Ludovic Tanguy, Manan Dey, Manuel Romero Muñoz, Maraim Masoud, María Grandury, Mario Šaško, Max Huang, Maximin Coavoux, Mayank Singh, Mike Tian-Jian Jiang, Minh Chien Vu, Mohammad A. Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora Kassner, Nurulaqilla Khamis, Olivier Nguyen, Omar Espejel, Ona de Gibert, Paulo Villegas, Peter Henderson, Pierre Colombo, Priscilla Amuok, Quentin Lhoest, Rheza Harliman, Rishi Bommasani, Roberto Luis López, Rui Ribeiro, Salomey Osei, Sampo Pyysalo, Sebastian Nagel, Shamik Bose, Shamsuddeen Hassan Muhammad, Shanya Sharma, Shayne Longpre, Somaieh Nikpoor, Stanislav Silberberg, Suhas Pai, Sydney Zink, Tiago Timponi Torrent, Timo Schick, Tristan Thrush, Valentin Danchev, Vassilina Nikoulina, Veronika Laippala, Violette Lepercq, Vrinda Prabhu, Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin Heinzerling, Chenglei Si, Davut Emre Taşar, Elizabeth Salesky, Sabrina J. Mielke, Wilson Y. Lee, Abheesht Sharma, Andrea Santilli, Antoine Chaffin, Arnaud Stiegler, Debajyoti Datta, Eliza Szczechla, Gunjan Chhablani, Han Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Saiful Bari, Maged S. Al-shaibani, Matteo Manica, Nihal Nayak, Ryan Teehan, Samuel Albanie, Sheng Shen, Srulik Ben-David, Stephen H. Bach, Taewoon Kim, Tali Bers, Thibault Fevry, Trishala Neeraj, Urmish Thakker, Vikas Raunak, Xiangru Tang, Zheng-Xin Yong, Zhiqing Sun, Shaked Brody, Yallow Uri, Hadar Tojarieh, Adam Roberts, Hyung Won Chung, Jaesung Tae, Jason Phang, Ofir Press, Conglong Li, Deepak Narayanan, Hatim Bourfoune, Jared Casper, Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia Zhang, Mohammad Shoeybi, Myriam Peyrounette, Nicolas Patry, Nouamane Tazi, Omar Sanseviero, Patrick von Platen, Pierre Cornette, Pierre François Lavallée, Rémi Lacroix, Samyam Rajbhandari, Sanchit Gandhi, Shaden Smith, Stéphane Requena, Suraj Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet Singh, Anastasia Cheveleva, Anne-Laure Ligozat, Arjun Subramonian, Aurélie Névéol, Charles Lovering, Dan Garrette, Deepak Tunuguntla, Ehud Reiter, Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bogdanov, Genta Indra Winata, Hailey Schoelkopf, Jan-Christoph Kalo, Jekaterina Novikova, Jessica Zosa Forde, Jordan Clive, Jungo Kasai, Ken Kawamura, Liam Hazan, Marine Carpuat, Miruna Clinciu, Najoung Kim, Newton Cheng, Oleg Serikov, Omer Antverg, Oskar van der Wal, Rui Zhang, Ruochen Zhang, Sebastian Gehrmann, Shachar Mirkin, Shani Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun, Tomasz Limisiewicz, Verena Rieser, Vitaly Protasov, Vladislav Mikhailov, Yada Pruksachatkun, Yonatan Belinkov, Zachary Bamberger, Zdeněk Kasner, Alice Rueda, Amanda Pestana, Amir Feizpour, Ammar Khan, Amy Faranak, Ana Santos, Anthony Hevia, Antigona Unldreaj, Arash Aghagol, Arezoo Abdollahi, Aycha Tammour, Azadeh HajiHosseini, Bahareh Behroozi, Benjamin Ajibade, Bharat Saxena, Carlos Muñoz Ferrandis, Daniel McDuff, Danish Contractor, David Lansky, Davis David, Douwe Kiela, Duong A. Nguyen, Edward Tan, Emi Baylor, Ezinwanne Ozoani, Fatima Mirza, Frankline Ononiwu, Habib Rezanejad, Hessie Jones, Indrani Bhattacharya, Irene Solaiman, Irina Sedenko, Isar Nejadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis Sanz, Livia Dutra, Mairon Samagaio, Maraim Elbadri, Margot Mieskes, Marissa Gerchick, Martha Akinlolu, Michael McKenna, Mike Qiu, Muhammed Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Rajani, Nour Elkott, Nour Fahmy, Olanrewaju Samuel, Ran An, Rasmus Kromann, Ryan Hao, Samira Alizadeh, Sarmad Shubber, Silas Wang, Sourav Roy, Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le, Yoyo Yang, Zach Nguyen, Abhinav Ramesh Kashyap, Alfredo Palasciano, Alison Callahan, Anima Shukla, Antonio Miranda-Escalada, Ayush Singh, Benjamin Beilharz, Bo wang, Caio Brito, Chenxi Zhou, Chirag Jain, Chuxin Xu, Clémentine Fourrier, Daniel León Periñán, Daniel Molano, Dian Yu, Enrique Manjavacas, Fabio Barth, Florian Fuhrimann, Gabriel Altay, Giyaseddin Bayrak, Gully Burns, Helena U. Vrabec, Imane Bello, Ishani Dash, Jihyun Kang, John Giorgi, Jonas Golde, Jose David Posada, Karthik Rangasai Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa Shinzato, Madeleine Hahn de Bykhovetz, Maiko Takeuchi, Marc Pàmies, Maria A Castillo, Marianna Nezhurina, Mario Sänger, Matthias Samwald, Michael Cullan, Michael Weinberg, Michiel De Wolf, Mina Mihaljcic, Minna Liu, Moritz Freidank, Myungsun Kang, Natasha Seelam, Nathan Dahlberg, Nicholas Michio Broad, Nikolaus Muellner, Pascale Fung, Patrick Haller, Ramya Chandrasekhar, Renata Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda, Shlok S Deshmukh, Shubhanshu Mishra, Sid Kiblawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Kumar, Stefan Schweter, Sushil Bharati, Tanmay Laud, Théo Gigant, Tomoya Kainuma, Wojciech Kusa, Yanis Labrak, Yash Shailesh Bajaj, Yash Venkatraman, Yifan Xu, Yingxin Xu, Yu Xu, Zhe Tan, Zhongli Xie, Zifan Ye, Mathilde Bras, Younes Belkada, Thomas Wolf
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions.
1 code implementation • 13 Oct 2022 • Mayank Mishra, Danish Contractor, Dinesh Raghu
Traditional systems designed for task oriented dialog utilize knowledge present only in structured knowledge sources to generate responses.
1 code implementation • 16 Jun 2022 • Harsh Rangwani, Sumukh K Aithal, Mayank Mishra, Arihant Jain, R. Venkatesh Babu
Based on the analysis, we introduce the Smooth Domain Adversarial Training (SDAT) procedure, which effectively enhances the performance of existing domain adversarial methods for both classification and object detection tasks.
Ranked #7 on
Domain Adaptation
on VisDA2017
1 code implementation • 23 Nov 2021 • Mayank Mishra, Dhiraj Madan, Gaurav Pandey, Danish Contractor
Recent methods for knowledge grounded dialogs generate responses by incorporating information from an external textual document.
no code implementations • 27 Oct 2021 • Varad Pimpalkhute, Amey Pandit, Mayank Mishra, Rekha Singhal
Meta Learning has been in focus in recent years due to the meta-learner model's ability to adapt well and generalize to new tasks, thus, reducing both the time and data requirements for learning.
1 code implementation • 28 Mar 2019 • Prathosh A. P., Varun Srivastava, Mayank Mishra
A popular alternative is to indirectly obtain the source information through the Electroglottographic (EGG) signal that measures the electrical admittance around the vocal folds using dedicated hardware.
1 code implementation • 24 Mar 2019 • Vinay Kyatham, Mayank Mishra, Tarun Kumar Yadav, Deepak Mishra, Prathosh AP
Specifically, we simultaneously auto-encode the data manifold and its perturbations implicitly through the perturbations of the regularized and quantized generative latent space, realized using variational inference.