Search Results for author: Md. Mostafa Kamal Sarker

Found 12 papers, 4 papers with code

Breast Cancer Immunohistochemical Image Generation: a Benchmark Dataset and Challenge Review

1 code implementation5 May 2023 Chuang Zhu, ShengJie Liu, Zekuan Yu, Feng Xu, Arpit Aggarwal, Germán Corredor, Anant Madabhushi, Qixun Qu, Hongwei Fan, Fangda Li, Yueheng Li, Xianchao Guan, Yongbing Zhang, Vivek Kumar Singh, Farhan Akram, Md. Mostafa Kamal Sarker, Zhongyue Shi, Mulan Jin

For invasive breast cancer, immunohistochemical (IHC) techniques are often used to detect the expression level of human epidermal growth factor receptor-2 (HER2) in breast tissue to formulate a precise treatment plan.

Image Generation SSIM

AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation

no code implementations11 Oct 2021 Syeda Furruka Banu, Md. Mostafa Kamal Sarker, Mohamed Abdel-Nasser, Domenec Puig, Hatem A. Raswan

Accurate lung nodule detection and segmentation in computed tomography (CT) images is the most important part of diagnosing lung cancer in the early stage.

Computed Tomography (CT) Lung Nodule Detection +2

Adversarial Learning with Multiscale Features and Kernel Factorization for Retinal Blood Vessel Segmentation

no code implementations5 Jul 2019 Farhan Akram, Vivek Kumar Singh, Hatem A. Rashwan, Mohamed Abdel-Nasser, Md. Mostafa Kamal Sarker, Nidhi Pandey, Domenec Puig

In this paper, we propose an efficient blood vessel segmentation method for the eye fundus images using adversarial learning with multiscale features and kernel factorization.

Segmentation

SLSNet: Skin lesion segmentation using a lightweight generative adversarial network

1 code implementation1 Jul 2019 Md. Mostafa Kamal Sarker, Hatem A. Rashwan, Farhan Akram, Vivek Kumar Singh, Syeda Furruka Banu, Forhad U H Chowdhury, Kabir Ahmed Choudhury, Sylvie Chambon, Petia Radeva, Domenec Puig, Mohamed Abdel-Nasser

Thus, this article aims to achieve precise skin lesion segmentation with minimum resources: a lightweight, efficient generative adversarial network (GAN) model called SLSNet, which combines 1-D kernel factorized networks, position and channel attention, and multiscale aggregation mechanisms with a GAN model.

Generative Adversarial Network Image Segmentation +5

Cannot find the paper you are looking for? You can Submit a new open access paper.