no code implementations • 3 Oct 2023 • Xianjing Liu, Bo Li, Meike W. Vernooij, Eppo B. Wolvius, Gennady V. Roshchupkin, Esther E. Bron
AI has greatly enhanced medical image analysis, yet its use in epidemiological population imaging studies remains limited due to visualization challenges in non-linear models and lack of confounder control.
no code implementations • 18 Jun 2023 • Bo Li, Jeroen de Bresser, Wiro Niessen, Matthias Van Osch, Wiesje M. van der Flier, Geert Jan Biessels, Meike W. Vernooij, Esther Bron
Lacunes of presumed vascular origin, also referred to as lacunar infarcts, are important to assess cerebral small vessel disease and cognitive diseases such as dementia.
no code implementations • 15 Aug 2022 • Carole H. Sudre, Kimberlin Van Wijnen, Florian Dubost, Hieab Adams, David Atkinson, Frederik Barkhof, Mahlet A. Birhanu, Esther E. Bron, Robin Camarasa, Nish Chaturvedi, Yuan Chen, Zihao Chen, Shuai Chen, Qi Dou, Tavia Evans, Ivan Ezhov, Haojun Gao, Marta Girones Sanguesa, Juan Domingo Gispert, Beatriz Gomez Anson, Alun D. Hughes, M. Arfan Ikram, Silvia Ingala, H. Rolf Jaeger, Florian Kofler, Hugo J. Kuijf, Denis Kutnar, Minho Lee, Bo Li, Luigi Lorenzini, Bjoern Menze, Jose Luis Molinuevo, Yiwei Pan, Elodie Puybareau, Rafael Rehwald, Ruisheng Su, Pengcheng Shi, Lorna Smith, Therese Tillin, Guillaume Tochon, Helene Urien, Bas H. M. van der Velden, Isabelle F. van der Velpen, Benedikt Wiestler, Frank J. Wolters, Pinar Yilmaz, Marius de Groot, Meike W. Vernooij, Marleen de Bruijne
This challenge aimed to promote the development of methods for automated detection and segmentation of small and sparse imaging markers of cerebral small vessel disease, namely enlarged perivascular spaces (EPVS) (Task 1), cerebral microbleeds (Task 2) and lacunes of presumed vascular origin (Task 3) while leveraging weak and noisy labels.
no code implementations • 20 Jul 2021 • Gerda Bortsova, Daniel Bos, Florian Dubost, Meike W. Vernooij, M. Kamran Ikram, Gijs van Tulder, Marleen de Bruijne
To evaluate the method, we compared manual and automatic assessment (computed using ten-fold cross-validation) with respect to 1) the agreement with an independent observer's assessment (available in a random subset of 47 scans); 2) the accuracy in delineating ICAC as judged via blinded visual comparison by an expert; 3) the association with first stroke incidence from the scan date until 2012.
1 code implementation • 28 Dec 2020 • Bo Li, Wiro J. Niessen, Stefan Klein, Marius de Groot, M. Arfan Ikram, Meike W. Vernooij, Esther E. Bron
This work presents a single-step deep-learning framework for longitudinal image analysis, coined Segis-Net.
no code implementations • 3 Nov 2020 • Bo Li, Wiro J. Niessen, Stefan Klein, M. Arfan Ikram, Meike W. Vernooij, Esther E. Bron
We here propose an analytical framework based on an unbiased learning strategy for group-wise registration that simultaneously registers images to the mean space of a group to obtain consistent segmentations.
no code implementations • 26 May 2020 • Bo Li, Marius de Groot, Rebecca M. E. Steketee, Rozanna Meijboom, Marion Smits, Meike W. Vernooij, M. Arfan Ikram, Jiren Liu, Wiro J. Niessen, Esther E. Bron
This 3D end-to-end method is trained to segment 25 WM tracts in aging individuals from a large population-based study (N=9752, 1. 5T MRI).
no code implementations • 12 Apr 2020 • Oliver Werner, Kimberlin M. H. van Wijnen, Wiro J. Niessen, Marius de Groot, Meike W. Vernooij, Florian Dubost, Marleen de Bruijne
We showed that networks optimized using only weak labels reflecting WMH volume generalized better for WMH volume prediction than networks optimized with voxel-wise segmentations of WMH.
no code implementations • 29 Jul 2019 • Kimberlin M. H. van Wijnen, Florian Dubost, Pinar Yilmaz, M. Arfan Ikram, Wiro J. Niessen, Hieab Adams, Meike W. Vernooij, Marleen de Bruijne
We show the potential of this approach to detect enlarged perivascular spaces in white matter on a large brain MRI dataset with an independent test set of 1000 scans.
no code implementations • 15 Mar 2017 • Veronika Cheplygina, Annegreet van Opbroek, M. Arfan Ikram, Meike W. Vernooij, Marleen de Bruijne
We show that the asymmetry can indeed be informative, and that computing the similarity from the test image to the training images is more appropriate than the opposite direction.