Search Results for author: Meixia Lin

Found 5 papers, 0 papers with code

Estimation and inference of signals via the stochastic geometry of spectrogram level sets

no code implementations6 May 2021 Subhroshekhar Ghosh, Meixia Lin, Dongfang Sun

However, the zero sets (or the maxima or minima) of GAFs have a complicated stochastic structure, which makes a direct theoretical analysis of usual spectrogram based techniques via GAFs a difficult proposition.

Estimation of sparse Gaussian graphical models with hidden clustering structure

no code implementations17 Apr 2020 Meixia Lin, Defeng Sun, Kim-Chuan Toh, Chengjing Wang

The sparsity and clustering structure of the concentration matrix is enforced to reduce model complexity and describe inherent regularities.

Efficient algorithms for multivariate shape-constrained convex regression problems

no code implementations26 Feb 2020 Meixia Lin, Defeng Sun, Kim-Chuan Toh

We prove that the least squares estimator is computable via solving a constrained convex quadratic programming (QP) problem with $(n+1)d$ variables and at least $n(n-1)$ linear inequality constraints, where $n$ is the number of data points.

A dual Newton based preconditioned proximal point algorithm for exclusive lasso models

no code implementations1 Feb 2019 Meixia Lin, Defeng Sun, Kim-Chuan Toh, Yancheng Yuan

In addition, we derive the corresponding HS-Jacobian to the proximal mapping and analyze its structure --- which plays an essential role in the efficient computation of the PPA subproblem via applying a semismooth Newton method on its dual.

Efficient sparse semismooth Newton methods for the clustered lasso problem

no code implementations22 Aug 2018 Meixia Lin, Yong-Jin Liu, Defeng Sun, Kim-Chuan Toh

Based on the new formulation, we derive an efficient procedure for its computation.

Cannot find the paper you are looking for? You can Submit a new open access paper.