no code implementations • 9 Sep 2024 • Melanie F. Pradier, Javier González
First, we learn a low-dimensional, latent Riemannian manifold that accounts for uncertainty and geometry of the original input data.
no code implementations • 26 Apr 2023 • Melanie F. Pradier, Niranjani Prasad, Paidamoyo Chapfuwa, Sahra Ghalebikesabi, Max Ilse, Steven Woodhouse, Rebecca Elyanow, Javier Zazo, Javier Gonzalez, Julia Greissl, Edward Meeds
Recent advances in immunomics have shown that T-cell receptor (TCR) signatures can accurately predict active or recent infection by leveraging the high specificity of TCR binding to disease antigens.
no code implementations • 11 Jul 2022 • Ryutaro Tanno, Melanie F. Pradier, Aditya Nori, Yingzhen Li
Prediction failures of machine learning models often arise from deficiencies in training data, such as incorrect labels, outliers, and selection biases.
no code implementations • 13 Jan 2021 • Melanie F. Pradier, Javier Zazo, Sonali Parbhoo, Roy H. Perlis, Maurizio Zazzi, Finale Doshi-Velez
We propose Preferential MoE, a novel human-ML mixture-of-experts model that augments human expertise in decision making with a data-based classifier only when necessary for predictive performance.
no code implementations • 12 Dec 2019 • Beau Coker, Melanie F. Pradier, Finale Doshi-Velez
While Bayesian neural networks have many appealing characteristics, current priors do not easily allow users to specify basic properties such as expected lengthscale or amplitude variance.
no code implementations • pproximateinference AABI Symposium 2019 • Melanie F. Pradier, Michael C. Hughes, Finale Doshi-Velez
Variational inference based on chi-square divergence minimization (CHIVI) provides a way to approximate a model's posterior while obtaining an upper bound on the marginal likelihood.
1 code implementation • 15 May 2019 • Wanqian Yang, Lars Lorch, Moritz A. Graule, Srivatsan Srinivasan, Anirudh Suresh, Jiayu Yao, Melanie F. Pradier, Finale Doshi-Velez
Bayesian neural network (BNN) priors are defined in parameter space, making it hard to encode prior knowledge expressed in function space.
no code implementations • 29 Apr 2019 • Stefan G. Stark, Stephanie L. Hyland, Melanie F. Pradier, Kjong Lehmann, Andreas Wicki, Fernando Perez Cruz, Julia E. Vogt, Gunnar Rätsch
To demonstrate the utility of our approach, we perform an association study of clinical features with somatic mutation profiles from 4, 007 cancer patients and their tumors.
no code implementations • 16 Nov 2018 • Melanie F. Pradier, Weiwei Pan, Jiayu Yao, Soumya Ghosh, Finale Doshi-Velez
As machine learning systems get widely adopted for high-stake decisions, quantifying uncertainty over predictions becomes crucial.
no code implementations • 29 Jun 2018 • Melanie F. Pradier, Viktor Stojkoski, Zoran Utkovski, Ljupco Kocarev, Fernando Perez-Cruz
This paper presents a Bayesian nonparametric latent feature model specially suitable for exploratory analysis of high-dimensional count data.
no code implementations • 26 Jul 2017 • Isabel Valera, Melanie F. Pradier, Zoubin Ghahramani
This paper introduces a general Bayesian non- parametric latent feature model suitable to per- form automatic exploratory analysis of heterogeneous datasets, where the attributes describing each object can be either discrete, continuous or mixed variables.
1 code implementation • 12 Jun 2017 • Isabel Valera, Melanie F. Pradier, Maria Lomeli, Zoubin Ghahramani
Second, its Bayesian nonparametric nature allows us to automatically infer the model complexity from the data, i. e., the number of features necessary to capture the latent structure in the data.