1 code implementation • 4 Dec 2023 • Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu, Nouha Dziri, Melanie Sclar, Khyathi Chandu, Chandra Bhagavatula, Yejin Choi
We analyze the effect of alignment tuning by examining the token distribution shift between base LLMs and their aligned counterpart.
no code implementations • 24 Oct 2023 • Hyunwoo Kim, Melanie Sclar, Xuhui Zhou, Ronan Le Bras, Gunhee Kim, Yejin Choi, Maarten Sap
Theory of mind (ToM) evaluations currently focus on testing models using passive narratives that inherently lack interactivity.
1 code implementation • 17 Oct 2023 • Melanie Sclar, Yejin Choi, Yulia Tsvetkov, Alane Suhr
In this work, we focus on LLM sensitivity to a quintessential class of meaning-preserving design choices: prompt formatting.
1 code implementation • 12 Oct 2023 • Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar, Valentina Pyatkin, Chandra Bhagavatula, Bailin Wang, Yoon Kim, Yejin Choi, Nouha Dziri, Xiang Ren
The ability to derive underlying principles from a handful of observations and then generalize to novel situations -- known as inductive reasoning -- is central to human intelligence.
no code implementations • 1 Jun 2023 • Melanie Sclar, Sachin Kumar, Peter West, Alane Suhr, Yejin Choi, Yulia Tsvetkov
We present SymbolicToM, a plug-and-play approach to reason about the belief states of multiple characters in reading comprehension tasks via explicit symbolic representation.
1 code implementation • NeurIPS 2023 • Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson Ettinger, Zaid Harchaoui, Yejin Choi
We formulate compositional tasks as computation graphs to systematically quantify the level of complexity, and break down reasoning steps into intermediate sub-procedures.
no code implementations • 25 Oct 2022 • Melanie Sclar, Peter West, Sachin Kumar, Yulia Tsvetkov, Yejin Choi
Moreover, we uniquely propose iterative distillation of knowledge, where student models from the previous iteration of distillation serve as teacher models in the next iteration.
no code implementations • 29 Sep 2021 • Melanie Sclar, Graham Neubig, Yonatan Bisk
Theory of mind (ToM), the ability to understand others' thoughts and desires, is a cornerstone of human intelligence.
1 code implementation • NeurIPS Workshop SVRHM 2020 • Melanie Sclar, Gaston Bujia, Sebastian Vita, Guillermo Solovey, Juan Esteban Kamienkowski
Saliency models have been useful to predict fixation locations in natural images, but they provide no information about the time-sequence of fixations.