Search Results for author: Meng Wang

Found 156 papers, 45 papers with code

Large-Scale Few-Shot Learning via Multi-Modal Knowledge Discovery

no code implementations ECCV 2020 Shuo Wang, Jun Yue, Jianzhuang Liu, Qi Tian, Meng Wang

It is a challenging problem since (1) the identifying process is susceptible to over-fitting with limited samples of an object, and (2) the sample imbalance between a base (known knowledge) category and a novel category is easy to bias the recognition results.

Few-Shot Learning

Compact Bidirectional Transformer for Image Captioning

1 code implementation6 Jan 2022 Yuanen Zhou, Zhenzhen Hu, Daqing Liu, Huixia Ben, Meng Wang

In this paper, we introduce a Compact Bidirectional Transformer model for image captioning that can leverage bidirectional context implicitly and explicitly while the decoder can be executed parallelly.

Image Captioning

TextRGNN: Residual Graph Neural Networks for Text Classification

no code implementations30 Dec 2021 Jiayuan Chen, Boyu Zhang, Yinfei Xu, Meng Wang

Recently, text classification model based on graph neural network (GNN) has attracted more and more attention.

Language Modelling Text Classification

HBReID: Harder Batch for Re-identification

no code implementations9 Dec 2021 Wen Li, Furong Xu, Jianan Zhao, Ruobing Zheng, Cheng Zou, Meng Wang, Yuan Cheng

Triplet loss is a widely adopted loss function in ReID task which pulls the hardest positive pairs close and pushes the hardest negative pairs far away.

Person Re-Identification

Uncovering the Local Hidden Community Structure in Social Networks

no code implementations8 Dec 2021 Meng Wang, Boyu Li, Kun He, John E. Hopcroft

We theoretically show that our method can avoid some situations that a broken community and the local community are regarded as one community in the subgraph, leading to the inaccuracy on detection which can be caused by global hidden community detection methods.

Local Community Detection

Decoupled Low-light Image Enhancement

1 code implementation29 Nov 2021 Shijie Hao, Xu Han, Yanrong Guo, Meng Wang

On the other hand, since the parameter matrix learned from the first stage is aware of the lightness distribution and the scene structure, it can be incorporated into the second stage as the complementary information.

Low-Light Image Enhancement

Learning Non-Stationary Time-Series with Dynamic Pattern Extractions

no code implementations20 Nov 2021 Xipei Wang, Haoyu Zhang, Yuanbo Zhang, Meng Wang, Jiarui Song, Tin Lai, Matloob Khushi

Our results show that our model can predict 4-hour future trends with high accuracy in the Forex dataset, which is crucial in realistic scenarios to assist foreign exchange trading decision making.

Decision Making Dynamic Time Warping +1

Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on Pruned Neural Networks

no code implementations12 Oct 2021 Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, JinJun Xiong

Moreover, when the algorithm for training a pruned neural network is specified as an (accelerated) stochastic gradient descent algorithm, we theoretically show that the number of samples required for achieving zero generalization error is proportional to the number of the non-pruned weights in the hidden layer.

Vibration-based Uncertainty Estimation for Learning from Limited Supervision

no code implementations29 Sep 2021 Hengtong Hu, Lingxi Xie, Yinquan Wang, Richang Hong, Meng Wang, Qi Tian

We investigate the problem of estimating uncertainty for training data, so that deep neural networks can make use of the results for learning from limited supervision.

Active Learning

Multi View Spatial-Temporal Model for Travel Time Estimation

1 code implementation15 Sep 2021 Zichuan Liu, Zhaoyang Wu, Meng Wang, Rui Zhang

Specifically, we use graph2vec to model the spatial view, dual-channel temporal module to model the trajectory view, and structural embedding to model traffic semantics.

Leveraging Table Content for Zero-shot Text-to-SQL with Meta-Learning

1 code implementation12 Sep 2021 Yongrui Chen, Xinnan Guo, Chaojie Wang, Jian Qiu, Guilin Qi, Meng Wang, Huiying Li

Compared to the larger pre-trained model and the tabular-specific pre-trained model, our approach is still competitive.

Meta-Learning Text-To-Sql

ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

1 code implementation16 Aug 2021 Yuhao Cui, Zhou Yu, Chunqi Wang, Zhongzhou Zhao, Ji Zhang, Meng Wang, Jun Yu

Nevertheless, most existing VLP approaches have not fully utilized the intrinsic knowledge within the image-text pairs, which limits the effectiveness of the learned alignments and further restricts the performance of their models.

Multigranular Visual-Semantic Embedding for Cloth-Changing Person Re-identification

no code implementations10 Aug 2021 Zan Gao, Hongwei Wei, Weili Guan, Weizhi Nie, Meng Liu, Meng Wang

To solve these issues, in this work, a novel multigranular visual-semantic embedding algorithm (MVSE) is proposed for cloth-changing person ReID, where visual semantic information and human attributes are embedded into the network, and the generalized features of human appearance can be well learned to effectively solve the problem of clothing changes.

Person Re-Identification

TBNet:Two-Stream Boundary-aware Network for Generic Image Manipulation Localization

no code implementations10 Aug 2021 Zan Gao, Chao Sun, Zhiyong Cheng, Weili Guan, AnAn Liu, Meng Wang

In this work, a novel end-to-end two-stream boundary-aware network (abbreviated as TBNet) is proposed for generic image manipulation localization in which the RGB stream, the frequency stream, and the boundary artifact location are explored in a unified framework.

Image Manipulation

LadRa-Net: Locally-Aware Dynamic Re-read Attention Net for Sentence Semantic Matching

no code implementations6 Aug 2021 Kun Zhang, Guangyi Lv, Le Wu, Enhong Chen, Qi Liu, Meng Wang

In order to overcome this problem and boost the performance of attention mechanism, we propose a novel dynamic re-read attention, which can pay close attention to one small region of sentences at each step and re-read the important parts for better sentence representations.

Language Modelling Natural Language Inference +1

Few-shot Learning with Global Relatedness Decoupled-Distillation

no code implementations12 Jul 2021 Yuan Zhou, Yanrong Guo, Shijie Hao, Richang Hong, ZhengJun Zha, Meng Wang

To overcome these problems, we propose a new Global Relatedness Decoupled-Distillation (GRDD) method using the global category knowledge and the Relatedness Decoupled-Distillation (RDD) strategy.

Few-Shot Learning Metric Learning

Discrimination-Aware Mechanism for Fine-Grained Representation Learning

no code implementations CVPR 2021 Furong Xu, Meng Wang, Wei zhang, Yuan Cheng, Wei Chu

Therefore, there is a need for a training mechanism that enforces the discriminativeness of all the elements in the feature to capture more the subtle visual cues.

Representation Learning

Single View Physical Distance Estimation using Human Pose

no code implementations ICCV 2021 Xiaohan Fei, Henry Wang, Xiangyu Zeng, Lin Lee Cheong, Meng Wang, Joseph Tighe

We propose a fully automated system that simultaneously estimates the camera intrinsics, the ground plane, and physical distances between people from a single RGB image or video captured by a camera viewing a 3-D scene from a fixed vantage point.

Semi-Autoregressive Transformer for Image Captioning

1 code implementation17 Jun 2021 Yuanen Zhou, Yong Zhang, Zhenzhen Hu, Meng Wang

To tackle this issue, non-autoregressive image captioning models have recently been proposed to significantly accelerate the speed of inference by generating all words in parallel.

Image Captioning

DGA-Net Dynamic Gaussian Attention Network for Sentence Semantic Matching

no code implementations9 Jun 2021 Kun Zhang, Guangyi Lv, Meng Wang, Enhong Chen

Then, we develop a Dynamic Gaussian Attention (DGA) to dynamically capture the important parts and corresponding local contexts from a detailed perspective.

Language Modelling Representation Learning

Harnessing Unrecognizable Faces for Improving Face Recognition

no code implementations8 Jun 2021 Siqi Deng, Yuanjun Xiong, Meng Wang, Wei Xia, Stefano Soatto

The common implementation of face recognition systems as a cascade of a detection stage and a recognition or verification stage can cause problems beyond failures of the detector.

Face Recognition Quantization

Learning Elastic Embeddings for Customizing On-Device Recommenders

no code implementations4 Jun 2021 Tong Chen, Hongzhi Yin, Yujia Zheng, Zi Huang, Yang Wang, Meng Wang

The core idea is to compose elastic embeddings for each item, where an elastic embedding is the concatenation of a set of embedding blocks that are carefully chosen by an automated search function.

Recommendation Systems

Deconfounded Video Moment Retrieval with Causal Intervention

1 code implementation3 Jun 2021 Xun Yang, Fuli Feng, Wei Ji, Meng Wang, Tat-Seng Chua

To fill the research gap, we propose a causality-inspired VMR framework that builds structural causal model to capture the true effect of query and video content on the prediction.

Moment Retrieval

Privileged Graph Distillation for Cold Start Recommendation

no code implementations31 May 2021 Shuai Wang, Kun Zhang, Le Wu, Haiping Ma, Richang Hong, Meng Wang

The teacher model is composed of a heterogeneous graph structure for warm users and items with privileged CF links.

Collaborative Filtering Recommendation Systems

Set2setRank: Collaborative Set to Set Ranking for Implicit Feedback based Recommendation

1 code implementation16 May 2021 Lei Chen, Le Wu, Kun Zhang, Richang Hong, Meng Wang

Despite the performance gain of these implicit feedback based models, the recommendation results are still far from satisfactory due to the sparsity of the observed item set for each user.

Collaborative Filtering

MCGNet: Partial Multi-view Few-shot Learning via Meta-alignment and Context Gated-aggregation

no code implementations5 May 2021 Yuan Zhou, Yanrong Guo, Shijie Hao, Richang Hong, Meng Wang

Different from the traditional few-shot learning, this task aims to solve the few-shot learning problem given the incomplete multi-view prior knowledge, which conforms more with the real-world applications.

Few-Shot Learning MULTI-VIEW LEARNING

A Survey on Accuracy-oriented Neural Recommendation: From Collaborative Filtering to Information-rich Recommendation

1 code implementation27 Apr 2021 Le Wu, Xiangnan He, Xiang Wang, Kun Zhang, Meng Wang

Influenced by the great success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks.

Collaborative Filtering Sequential Recommendation

Quaternion Factorization Machines: A Lightweight Solution to Intricate Feature Interaction Modelling

no code implementations5 Apr 2021 Tong Chen, Hongzhi Yin, Xiangliang Zhang, Zi Huang, Yang Wang, Meng Wang

As a well-established approach, factorization machine (FM) is capable of automatically learning high-order interactions among features to make predictions without the need for manual feature engineering.

Feature Engineering

Positive Sample Propagation along the Audio-Visual Event Line

2 code implementations CVPR 2021 Jinxing Zhou, Liang Zheng, Yiran Zhong, Shijie Hao, Meng Wang

To encourage the network to extract high correlated features for positive samples, a new audio-visual pair similarity loss is proposed.

audio-visual event localization

Revisiting Deep Local Descriptor for Improved Few-Shot Classification

1 code implementation30 Mar 2021 Jun He, Richang Hong, Xueliang Liu, Mingliang Xu, Meng Wang

Few-shot classification studies the problem of quickly adapting a deep learner to understanding novel classes based on few support images.

Decision Making General Classification

Connected and Automated Vehicle Distributed Control for On-ramp Merging Scenario: A Virtual Rotation Approach

no code implementations28 Mar 2021 Tianyi Chen, Meng Wang, Siyuan Gong, Yang Zhou, Bin Ran

In this study, we propose a rotation-based connected automated vehicle (CAV) distributed cooperative control strategy for an on-ramp merging scenario.

Flatband-Induced Itinerant Ferromagnetism in RbCo$_2$Se$_2$

no code implementations11 Mar 2021 Jianwei Huang, Zhicai Wang, Hongsheng Pang, Han Wu, Huibo Cao, Sung-Kwan Mo, Avinash Rustagi, A. F. Kemper, Meng Wang, Ming Yi, R. J. Birgeneau

$A$Co$_2$Se$_2$ ($A$=K, Rb, Cs) is a homologue of the iron-based superconductor, $A$Fe$_2$Se$_2$.

Superconductivity Materials Science

Spectral Top-Down Recovery of Latent Tree Models

1 code implementation26 Feb 2021 Yariv Aizenbud, Ariel Jaffe, Meng Wang, Amber Hu, Noah Amsel, Boaz Nadler, Joseph T. Chang, Yuval Kluger

For large trees, a common approach, termed divide-and-conquer, is to recover the tree structure in two steps.

Measurement of the absolute branching fractions for purely leptonic $D_s^+$ decays

no code implementations23 Feb 2021 BESIII Collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, M. R. An, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, Z. J Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, Y. L. Fan, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, M. Fritsch, C. D. Fu, Y. Gao, Y. G. Gao, I. Garzia, P. T. Ge, C. Geng, E. M. Gersabeck, A Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, W. Y. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, C. H. Heinz, T. Held, Y. K. Heng, C. Herold, M. Himmelreich, T. Holtmann, G. Y. Hou, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, N Hüsken, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, J. S. Li, Ke Li, L. K. Li, Lei LI, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Xiaoyu Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. L. Liu, J. Y. Liu, K. Liu, K. Y. Liu, L. Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, W. M. Liu, X. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. X. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, H. Qi, H. R. Qi, K. H. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D. C. Shan, W. Shan, X. Y. Shan, J. F. Shangguan, M. Shao, C. P. Shen, H. F. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, K. X. Su, P. P. Su, F. F. Sui, G. X. Sun, H. K. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, J. X. Teng, V. Thoren, W. H. Tian, Y. T. Tian, I. Uman, B. Wang, C. W. Wang, D. Y. Wang, H. J. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Y. Y. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, G. F. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, S. L. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, L. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, A. Q. Zhang, B. X. Zhang, Guangyi Zhang, H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. M. Zhang, L. Q. Zhang, Lei Zhang, S. Zhang, S. F. Zhang, Shulei Zhang, X. D. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, T. J. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

Constraining our measurement to the Standard Model expectation of lepton universality ($R=9. 75$), we find the more precise results $\cal B(D_s^+\to \tau^+\nu_\tau) = (5. 22\pm0. 10\pm 0. 14)\times10^{-2}$ and $A_{\it CP}(\tau^\pm\nu_\tau) = (-0. 1\pm1. 9\pm1. 0)\%$.

High Energy Physics - Experiment

On Fast Adversarial Robustness Adaptation in Model-Agnostic Meta-Learning

1 code implementation ICLR 2021 Ren Wang, Kaidi Xu, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Chuang Gan, Meng Wang

Despite the generalization power of the meta-model, it remains elusive that how adversarial robustness can be maintained by MAML in few-shot learning.

Adversarial Attack Adversarial Robustness +3

Learning Fair Representations for Recommendation: A Graph-based Perspective

1 code implementation18 Feb 2021 Le Wu, Lei Chen, Pengyang Shao, Richang Hong, Xiting Wang, Meng Wang

For each user, this transformation is achieved under the adversarial learning of a user-centric graph, in order to obfuscate each sensitive feature between both the filtered user embedding and the sub graph structures of this user.

Fairness Recommendation Systems

Cross section measurement of $e^+e^- \to p\bar{p}η$ and $e^+e^- \to p\bar{p}ω$ at center-of-mass energies between 3.773 GeV and 4.6 GeV

no code implementations8 Feb 2021 M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J Biernat, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, Z. J Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, M. Fritsch, C. D. Fu, Y. Gao, Y. G. Gao, I. Garzia, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, C. H. Heinz, T. Held, Y. K. Heng, C. Herold, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, N. Hüsken, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, Ke Li, L. K. Li, Lei LI, P. L. Li, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, L. Liu, M. H. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, W. M. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. X. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H. R. Qi, K. H. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D. C. Shan, W. Shan, X. Y. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, K. X. Su, F. F. Sui, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, J. X. Teng, V. Thoren, I. Uman, B. Wang, C. W. Wang, D. Y. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, G. F. Xu, J. J. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, S. L. Yang, Y. H. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, L. Yuan, W. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, Lei Zhang, S. Zhang, S. F. Zhang, X. D. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

Based on $14. 7~\textrm{fb}^{-1}$ of $e^+e^-$ annihilation data collected with the BESIII detector at the BEPCII collider at 17 different center-of-mass energies between $3. 7730~\textrm{GeV}$ and $4. 5995~\textrm{GeV}$, Born cross sections of the two processes $e^+e^- \to p\bar{p}\eta$ and $e^+e^- \to p\bar{p}\omega$ are measured for the first time.

High Energy Physics - Experiment

Graphonomy: Universal Image Parsing via Graph Reasoning and Transfer

2 code implementations26 Jan 2021 Liang Lin, Yiming Gao, Ke Gong, Meng Wang, Xiaodan Liang

Prior highly-tuned image parsing models are usually studied in a certain domain with a specific set of semantic labels and can hardly be adapted into other scenarios (e. g., sharing discrepant label granularity) without extensive re-training.

Graph Representation Learning Human Parsing +2

Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on Sparse Neural Networks

no code implementations NeurIPS 2021 Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, JinJun Xiong

Moreover, as the algorithm for training a sparse neural network is specified as (accelerated) stochastic gradient descent algorithm, we theoretically show that the number of samples required for achieving zero generalization error is proportional to the number of the non-pruned model weights in the hidden layer.

Learning One-hidden-layer Neural Networks on Gaussian Mixture Models with Guaranteed Generalizability

no code implementations1 Jan 2021 Hongkang Li, Shuai Zhang, Meng Wang

Instead of following the conventional and restrictive assumption in the literature that the input features follow the standard Gaussian distribution, this paper, for the first time, analyzes a more general and practical scenario that the input features follow a Gaussian mixture model of a finite number of Gaussian distributions of various mean and variance.

Motion Prediction Using Trajectory Cues

no code implementations ICCV 2021 Zhenguang Liu, Pengxiang Su, Shuang Wu, Xuanjing Shen, Haipeng Chen, Yanbin Hao, Meng Wang

Predicting human motion from a historical pose sequence is at the core of many applications in computer vision.

motion prediction

Measurements of the center-of-mass energies of $e^{+}e^{-}$ collisions at BESIII

no code implementations29 Dec 2020 BESIII Collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, M. R. An, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, Z. J Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, S. X. Du, Y. L. Fan, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, M. Fritsch, C. D. Fu, Y. Gao, Y. G. Gao, I. Garzia, P. T. Ge, C. Geng, E. M. Gersabeck, A Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, T. T. Han, W. Y. Han, X. Q. Hao, F. A. Harris, N Hüsken, K. L. He, F. H. Heinsius, C. H. Heinz, T. Held, Y. K. Heng, C. Herold, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z. H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, J. S. Li, Ke Li, L. K. Li, Lei LI, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Xiaoyu Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. L. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, W. M. Liu, X. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. X. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, H. Qi, H. R. Qi, K. H. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H. S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, D. C. Shan, W. Shan, X. Y. Shan, J. F. Shangguan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, K. X. Su, P. P. Su, F. F. Sui, G. X. Sun, H. K. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, X Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, J. X. Teng, V. Thoren, W. H. Tian, Y. T. Tian, I. Uman, B. Wang, C. W. Wang, D. Y. Wang, H. J. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Y. Y. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, G. F. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, S. L. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, L. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. M. Zhang, L. Q. Zhang, Lei Zhang, S. Zhang, S. F. Zhang, Shulei Zhang, X. D. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, T. J. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

During the 2016-17 and 2018-19 running periods, the BESIII experiment collected 7. 5~fb$^{-1}$ of $e^+e^-$ collision data at center-of-mass energies ranging from 4. 13 to 4. 44 GeV.

High Energy Physics - Experiment

R$^2$-Net: Relation of Relation Learning Network for Sentence Semantic Matching

no code implementations16 Dec 2020 Kun Zhang, Le Wu, Guangyi Lv, Meng Wang, Enhong Chen, Shulan Ruan

Sentence semantic matching is one of the fundamental tasks in natural language processing, which requires an agent to determine the semantic relation among input sentences.

Relation Classification

Search for the reaction $e^{+}e^{-} \rightarrow π^{+}π^{-} χ_{cJ}$ and a charmonium-like structure decaying to $χ_{cJ}π^{\pm}$ between 4.18 and 4.60 GeV

no code implementations4 Dec 2020 BESIII Collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, A. Amoroso, Q. An, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J Biernat, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, J. P. Dai, X. C. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, S. X. Du, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, M. Fritsch, C. D. Fu, Y. Fu, X. L. Gao, Y. Gao, Y. G. Gao, I. Garzia, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, S. Han, T. T. Han, T. Z. Han, X. Q. Hao, F. A. Harris, N. Hüsken, K. L. He, F. H. Heinsius, T. Held, Y. K. Heng, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, H. B. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, A. Lavania, L. Lavezzi, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, Ke Li, L. K. Li, Lei LI, P. L. Li, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, J. Libby, C. X. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, D. Y. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, Y. F. Long, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. N. Ma, X. X. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, W. B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, D. C. Shan, W. Shan, X. Y. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, Q. Q. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, F. F. Sui, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, V. Thoren, I. Uman, B. Wang, B. L. Wang, C. W. Wang, D. Y. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Y. J. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, X. A. Xiong, G. F. Xu, J. J. Xu, Q. J. Xu, W. Xu, X. P. Xu, Y. C. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, R. X. Yang, S. L. Yang, Y. H. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, W. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. H. Zhang, H. Y. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, Lei Zhang, S. Zhang, S. F. Zhang, T. J. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, W. J. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

We search for the process $e^{+}e^{-}\rightarrow \pi ^{+}\pi ^{-} \chi_{cJ}$ ($J=0, 1, 2$) and for a charged charmonium-like state in the $\pi ^{\pm} \chi_{cJ}$ subsystem.

High Energy Physics - Experiment

Positive-Congruent Training: Towards Regression-Free Model Updates

no code implementations CVPR 2021 Sijie Yan, Yuanjun Xiong, Kaustav Kundu, Shuo Yang, Siqi Deng, Meng Wang, Wei Xia, Stefano Soatto

Reducing inconsistencies in the behavior of different versions of an AI system can be as important in practice as reducing its overall error.

Image Classification

LIAF-Net: Leaky Integrate and Analog Fire Network for Lightweight and Efficient Spatiotemporal Information Processing

no code implementations12 Nov 2020 Zhenzhi Wu, Hehui Zhang, Yihan Lin, Guoqi Li, Meng Wang, Ye Tang

To address this issue, in this work, we propose a Leaky Integrate and Analog Fire (LIAF) neuron model, so that analog values can be transmitted among neurons, and a deep network termed as LIAF-Net is built on it for efficient spatiotemporal processing.

Question Answering

Online Action Detection in Streaming Videos with Time Buffers

no code implementations6 Oct 2020 BoWen Zhang, Hao Chen, Meng Wang, Yuanjun Xiong

We formulate the problem of online temporal action detection in live streaming videos, acknowledging one important property of live streaming videos that there is normally a broadcast delay between the latest captured frame and the actual frame viewed by the audience.

Action Detection

Revealing Secrets in SPARQL Session Level

1 code implementation13 Sep 2020 Xinyue Zhang, Meng Wang, Muhammad Saleem, Axel-Cyrille Ngonga Ngomo, Guilin Qi, Haofen Wang

Based on Semantic Web technologies, knowledge graphs help users to discover information of interest by using live SPARQL services.

Knowledge Graphs

Dual Encoding for Video Retrieval by Text

1 code implementation10 Sep 2020 Jianfeng Dong, Xirong Li, Chaoxi Xu, Xun Yang, Gang Yang, Xun Wang, Meng Wang

In this paper we achieve this by proposing a dual deep encoding network that encodes videos and queries into powerful dense representations of their own.

Video Retrieval

Dual-constrained Deep Semi-Supervised Coupled Factorization Network with Enriched Prior

no code implementations8 Sep 2020 Yan Zhang, Zhao Zhang, Yang Wang, Zheng Zhang, Li Zhang, Shuicheng Yan, Meng Wang

Nonnegative matrix factorization is usually powerful for learning the "shallow" parts-based representation, but it clearly fails to discover deep hierarchical information within both the basis and representation spaces.

Graph Learning Representation Learning

A Survey on Large-scale Machine Learning

1 code implementation10 Aug 2020 Meng Wang, Weijie Fu, Xiangnan He, Shijie Hao, Xindong Wu

Machine learning can provide deep insights into data, allowing machines to make high-quality predictions and having been widely used in real-world applications, such as text mining, visual classification, and recommender systems.

Recommendation Systems

Practical Detection of Trojan Neural Networks: Data-Limited and Data-Free Cases

1 code implementation ECCV 2020 Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, JinJun Xiong, Meng Wang

When the training data are maliciously tampered, the predictions of the acquired deep neural network (DNN) can be manipulated by an adversary known as the Trojan attack (or poisoning backdoor attack).

Feature Pyramid Transformer

1 code implementation ECCV 2020 Dong Zhang, Hanwang Zhang, Jinhui Tang, Meng Wang, Xiansheng Hua, Qianru Sun

Yet, the non-local spatial interactions are not across scales, and thus they fail to capture the non-local contexts of objects (or parts) residing in different scales.

Instance Segmentation Object Detection +1

Learning to Discretely Compose Reasoning Module Networks for Video Captioning

1 code implementation17 Jul 2020 Ganchao Tan, Daqing Liu, Meng Wang, Zheng-Jun Zha

However, existing visual reasoning methods designed for visual question answering are not appropriate to video captioning, for it requires more complex visual reasoning on videos over both space and time, and dynamic module composition along the generation process.

Question Answering Video Captioning +2

Model independent determination of the spin of the $Ω^{-}$ and its polarization alignment in $ψ(3686)\rightarrowΩ^{-}\barΩ^{+}$

no code implementations7 Jul 2020 M. Ablikim, M. N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, A. Amoroso, Q. An, Anita, X. H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J Biernat, J. Bloms, A. Bortone, I. Boyko, R. A. Briere, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, J. F. Chang, W. L. Chang, G. Chelkov, D. Y. Chen, G. Chen, H. S. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, W. S. Cheng, G. Cibinetto, F. Cossio, X. F. Cui, H. L. Dai, J. P. Dai, X. C. Dai, A. Dbeyssi, R. B. de Boer, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, S. X. Du, J. Fang, S. S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, M. Fritsch, C. D. Fu, Y. Fu, X. L. Gao, Y. Gao, Y. G. Gao, I. Garzia, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, L. M. Gu, M. H. Gu, S. Gu, Y. T. Gu, C. Y Guan, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, A. Guskov, S. Han, T. T. Han, T. Z. Han, X. Q. Hao, F. A. Harris, K. L. He, F. H. Heinsius, T. Held, Y. K. Heng, M. Himmelreich, T. Holtmann, Y. R. Hou, Z. L. Hou, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. S. Huang, L. Q. Huang, X. T. Huang, Y. P. Huang, Z. Huang, N. Huesken, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, H. B. Jiang, X. S. Jiang, X. Y. Jiang, J. B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Ke, I. K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M. G. Kurth, W. Kühn, J. J. Lane, J. S. Lange, P. Larin, L. Lavezzi, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. Li, H. B. Li, H. J. Li, J. L. Li, J. Q. Li, Ke Li, L. K. Li, Lei LI, P. L. Li, P. R. Li, S. Y. Li, W. D. Li, W. G. Li, X. H. Li, X. L. Li, Z. Y. Li, H. Liang, Y. F. Liang, Y. T. Liang, L. Z. Liao, J. Libby, C. X. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, D. Y. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. M. Liu, Huanhuan Liu, Huihui Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, Q. Liu, S. B. Liu, Shuai Liu, T. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Z. Q. Liu, Y. F. Long, X. C. Lou, F. X. Lu, H. J. Lu, J. D. Lu, J. G. Lu, X. L. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, P. W. Luo, T. Luo, X. L. Luo, S. Lusso, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, R. Q. Ma, R. T. Ma, X. N. Ma, X. X. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q. A. Malik, A. Mangoni, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H. R. Qi, M. Qi, T. Y. Qi, S. Qian, W. -B. Qian, Z. Qian, C. F. Qiao, L. Q. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, S. Q. Qu, K. H. Rashid, K. Ravindran, C. F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, D. C. Shan, W. Shan, X. Y. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. C. Shi, R. S. Shi, X. Shi, X. D Shi, J. J. Song, Q. Q. Song, W. M. Song, Y. X. Song, S. Sosio, S. Spataro, F. F. Sui, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, T. Sun, W. Y. Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. T. Sun, Y. H. Tan, Y. X. Tan, C. J. Tang, G. Y. Tang, J. Tang, V. Thoren, I. Uman, B. Wang, B. L. Wang, C. W. Wang, D. Y. Wang, H. P. Wang, K. Wang, L. L. Wang, M. Wang, M. Z. Wang, Meng Wang, W. H. Wang, W. P. Wang, X. Wang, X. F. Wang, X. L. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. Y. Wang, Ziyi Wang, Zongyuan Wang, D. H. Wei, P. Weidenkaff, F. Weidner, S. P. Wen, D. J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J. F. Wu, L. H. Wu, L. J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S. Y. Xiao, Y. J. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, T. Y. Xing, X. A. Xiong, G. F. Xu, J. J. Xu, Q. J. Xu, W. Xu, X. P. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, Xu Yan, H. J. Yang, H. X. Yang, L. Yang, R. X. Yang, S. L. Yang, Y. H. Yang, Y. X. Yang, Yifan Yang, Zhi Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, T. Yu, C. Z. Yuan, W. Yuan, X. Q. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, A. Yuncu, A. A. Zafar, Y. Zeng, B. X. Zhang, Guangyi Zhang, H. H. Zhang, H. Y. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. Zhang, Lei Zhang, S. Zhang, S. F. Zhang, T. J. Zhang, X. Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z. H. Zhang, Z. Y. Zhang, G. Zhao, J. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, Y. Zheng, Y. H. Zheng, B. Zhong, C. Zhong, L. P. Zhou, Q. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, W. J. Zhu, X. L. Zhu, Y. C. Zhu, Z. A. Zhu, B. S. Zou, J. H. Zou

We present an analysis of the process $\psi(3686) \to \Omega^- \bar{\Omega}^+$ ($\Omega^-\to K^-\Lambda$, $\bar{\Omega}^+\to K^+\bar{\Lambda}$, $\Lambda\to p\pi^-$, $\bar{\Lambda}\to \bar{p}\pi^+$) based on a data set of $448\times 10^6$ $\psi(3686)$ decays collected with the BESIII detector at the BEPCII electron-positron collider.

High Energy Physics - Experiment

Tree-Augmented Cross-Modal Encoding for Complex-Query Video Retrieval

no code implementations6 Jul 2020 Xun Yang, Jianfeng Dong, Yixin Cao, Xun Wang, Meng Wang, Tat-Seng Chua

To facilitate video retrieval with complex queries, we propose a Tree-augmented Cross-modal Encoding method by jointly learning the linguistic structure of queries and the temporal representation of videos.

Video Retrieval

Fast Learning of Graph Neural Networks with Guaranteed Generalizability: One-hidden-layer Case

no code implementations ICML 2020 Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, JinJun Xiong

In this paper, we provide a theoretically-grounded generalizability analysis of GNNs with one hidden layer for both regression and binary classification problems.

General Classification

Recurrent Relational Memory Network for Unsupervised Image Captioning

no code implementations24 Jun 2020 Dan Guo, Yang Wang, Peipei Song, Meng Wang

Unsupervised image captioning with no annotations is an emerging challenge in computer vision, where the existing arts usually adopt GAN (Generative Adversarial Networks) models.

Image Captioning Relational Reasoning

Enhancing Factorization Machines with Generalized Metric Learning

1 code implementation20 Jun 2020 Yangyang Guo, Zhiyong Cheng, Jiazheng Jing, Yanpeng Lin, Liqiang Nie, Meng Wang

Traditional FMs adopt the inner product to model the second-order interactions between different attributes, which are represented via feature vectors.

Metric Learning Recommendation Systems

Unsupervised Vehicle Re-identification with Progressive Adaptation

no code implementations20 Jun 2020 Jinjia Peng, Yang Wang, Huibing Wang, Zhao Zhang, Xianping Fu, Meng Wang

For PAL, a data adaptation module is employed for source domain, which generates the images with similar data distribution to unlabeled target domain as ``pseudo target samples''.

Vehicle Re-Identification

An Edge Information and Mask Shrinking Based Image Inpainting Approach

no code implementations11 Jun 2020 Huali Xu, Xiangdong Su, Meng Wang, Xiang Hao, Guanglai Gao

The mask shrinking strategy is employed in the image completion model to track the areas to be repaired.

Image Inpainting

How to Retrain Recommender System? A Sequential Meta-Learning Method

1 code implementation27 May 2020 Yang Zhang, Fuli Feng, Chenxu Wang, Xiangnan He, Meng Wang, Yan Li, Yongdong Zhang

Nevertheless, normal training on new data only may easily cause overfitting and forgetting issues, since the new data is of a smaller scale and contains fewer information on long-term user preference.

Meta-Learning Recommendation Systems

Learning to Transfer Graph Embeddings for Inductive Graph based Recommendation

no code implementations24 May 2020 Le Wu, Yonghui Yang, Lei Chen, Defu Lian, Richang Hong, Meng Wang

The transfer network is designed to approximate the learned item embeddings from graph neural networks by taking each item's visual content as input, in order to tackle the new segment problem in the test phase.

Transfer Learning

Real-time Semantic Segmentation via Spatial-detail Guided Context Propagation

no code implementations22 May 2020 Shijie Hao, Yuan Zhou, Yanrong Guo, Richang Hong, Jun Cheng, Meng Wang

However, many vision computing tasks, e. g. semantic segmentation, are usually computationally expensive, posing a challenge to the computing systems that are resource-constrained but require fast response speed.

Real-Time Semantic Segmentation

Try This Instead: Personalized and Interpretable Substitute Recommendation

no code implementations19 May 2020 Tong Chen, Hongzhi Yin, Guanhua Ye, Zi Huang, Yang Wang, Meng Wang

Then, by treating attributes as the bridge between users and items, we can thoroughly model the user-item preferences (i. e., personalization) and item-item relationships (i. e., substitution) for recommendation.

Collaborative Filtering Sentiment Analysis

SimpleMKKM: Simple Multiple Kernel K-means

1 code implementation11 May 2020 Xinwang Liu, En Zhu, Jiyuan Liu, Timothy Hospedales, Yang Wang, Meng Wang

We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM).

Memory-Augmented Relation Network for Few-Shot Learning

no code implementations9 May 2020 Jun He, Richang Hong, Xueliang Liu, Mingliang Xu, Zheng-Jun Zha, Meng Wang

Metric-based few-shot learning methods concentrate on learning transferable feature embedding that generalizes well from seen categories to unseen categories under the supervision of limited number of labelled instances.

Few-Shot Learning Metric Learning

Deep Multimodal Neural Architecture Search

no code implementations25 Apr 2020 Zhou Yu, Yuhao Cui, Jun Yu, Meng Wang, DaCheng Tao, Qi Tian

Most existing works focus on a single task and design neural architectures manually, which are highly task-specific and hard to generalize to different tasks.

Neural Architecture Search Question Answering +3

Person Re-Identification via Active Hard Sample Mining

no code implementations10 Apr 2020 Xin Xu, Lei Liu, Weifeng Liu, Meng Wang, Ruimin Hu

To alleviate such a problem, we present an active hard sample mining framework via training an effective re-ID model with the least labeling efforts.

Person Re-Identification

Iterative Context-Aware Graph Inference for Visual Dialog

1 code implementation CVPR 2020 Dan Guo, Hui Wang, Hanwang Zhang, Zheng-Jun Zha, Meng Wang

Visual dialog is a challenging task that requires the comprehension of the semantic dependencies among implicit visual and textual contexts.

Graph Attention Graph Embedding +1

More Grounded Image Captioning by Distilling Image-Text Matching Model

1 code implementation CVPR 2020 Yuanen Zhou, Meng Wang, Daqing Liu, Zhenzhen Hu, Hanwang Zhang

To improve the grounding accuracy while retaining the captioning quality, it is expensive to collect the word-region alignment as strong supervision.

Image Captioning Knowledge Distillation +2

Reinforced Negative Sampling over Knowledge Graph for Recommendation

1 code implementation12 Mar 2020 Xiang Wang, Yaokun Xu, Xiangnan He, Yixin Cao, Meng Wang, Tat-Seng Chua

Properly handling missing data is a fundamental challenge in recommendation.

RCC-Dual-GAN: An Efficient Approach for Outlier Detection with Few Identified Anomalies

no code implementations7 Mar 2020 Zhe Li, Chunhua Sun, Chunli Liu, Xiayu Chen, Meng Wang, Yezheng Liu

To address these issues, we focus on semi-supervised outlier detection with few identified anomalies, in the hope of using limited labels to achieve high detection accuracy.

Outlier Detection

LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation

12 code implementations6 Feb 2020 Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, Meng Wang

We propose a new model named LightGCN, including only the most essential component in GCN -- neighborhood aggregation -- for collaborative filtering.

Collaborative Filtering Graph Classification +1

Revisiting Graph based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach

2 code implementations28 Jan 2020 Lei Chen, Le Wu, Richang Hong, Kun Zhang, Meng Wang

Second, we propose a residual network structure that is specifically designed for CF with user-item interaction modeling, which alleviates the over smoothing problem in graph convolution aggregation operation with sparse user-item interaction data.

Collaborative Filtering Graph Convolutional Network +2

Semi-DerainGAN: A New Semi-supervised Single Image Deraining Network

no code implementations23 Jan 2020 Yanyan Wei, Zhao Zhang, Yang Wang, Haijun Zhang, Mingbo Zhao, Mingliang Xu, Meng Wang

Although supervised deep deraining networks have obtained impressive results on synthetic datasets, they still cannot obtain satisfactory results on real images due to weak generalization of rain removal capacity, i. e., the pre-trained models usually cannot handle new shapes and directions that may lead to over-derained/under-derained results.

Single Image Deraining

Dense Residual Network: Enhancing Global Dense Feature Flow for Character Recognition

no code implementations23 Jan 2020 Zhao Zhang, Zemin Tang, Yang Wang, Zheng Zhang, Choujun Zhan, ZhengJun Zha, Meng Wang

To construct FDRN, we propose a new fast residual dense block (f-RDB) to retain the ability of local feature fusion and local residual learning of original RDB, which can reduce the computing efforts at the same time.

DiffNet++: A Neural Influence and Interest Diffusion Network for Social Recommendation

2 code implementations15 Jan 2020 Le Wu, Junwei Li, Peijie Sun, Richang Hong, Yong Ge, Meng Wang

Recently, we propose a preliminary work of a neural influence diffusion network (i. e., DiffNet) for social recommendation (Diffnet), which models the recursive social diffusion process to capture the higher-order relationships for each user.

Collaborative Filtering

Learning Hybrid Representation by Robust Dictionary Learning in Factorized Compressed Space

no code implementations26 Dec 2019 Jiahuan Ren, Zhao Zhang, Sheng Li, Yang Wang, Guangcan Liu, Shuicheng Yan, Meng Wang

Specifically, J-RFDL performs the robust representation by DL in a factorized compressed space to eliminate the negative effects of noise and outliers on the results, which can also make the DL process efficient.

Dictionary Learning

Convolutional Dictionary Pair Learning Network for Image Representation Learning

no code implementations17 Dec 2019 Zhao Zhang, Yulin Sun, Yang Wang, Zheng-Jun Zha, Shuicheng Yan, Meng Wang

To address this issue, we propose a novel generalized end-to-end representation learning architecture, dubbed Convolutional Dictionary Pair Learning Network (CDPL-Net) in this paper, which integrates the learning schemes of the CNN and dictionary pair learning into a unified framework.

Dictionary Learning Representation Learning