1 code implementation • ICCV 2023 • Kan Wu, Houwen Peng, Zhenghong Zhou, Bin Xiao, Mengchen Liu, Lu Yuan, Hong Xuan, Michael Valenzuela, Xi, Chen, Xinggang Wang, Hongyang Chao, Han Hu
In this paper, we propose a novel cross-modal distillation method, called TinyCLIP, for large-scale language-image pre-trained models.
no code implementations • 25 May 2023 • Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen Liu, Lu Yuan, Zicheng Liu, Youzuo Lin
This paper reveals that every image can be understood as a first-order norm+linear autoregressive process, referred to as FINOLA, where norm+linear denotes the use of normalization before the linear model.
1 code implementation • 27 Feb 2023 • Ziyu Jiang, Yinpeng Chen, Mengchen Liu, Dongdong Chen, Xiyang Dai, Lu Yuan, Zicheng Liu, Zhangyang Wang
This motivates us to shift the paradigm from combining loss at the end, to choosing the proper learning method per network layer.
2 code implementations • CVPR 2023 • Rui Wang, Dongdong Chen, Zuxuan Wu, Yinpeng Chen, Xiyang Dai, Mengchen Liu, Lu Yuan, Yu-Gang Jiang
For the choice of teacher models, we observe that students taught by video teachers perform better on temporally-heavy video tasks, while image teachers transfer stronger spatial representations for spatially-heavy video tasks.
Ranked #1 on
Self-Supervised Action Recognition
on HMDB51
no code implementations • 23 Nov 2022 • Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen Liu, Lu Yuan, Zicheng Liu, Youzuo Lin
When transferring to object detection with frozen backbone, QB-Heat outperforms MoCo-v2 and supervised pre-training on ImageNet by 7. 9 and 4. 5 AP respectively.
no code implementations • 25 Aug 2022 • Rui Wang, Zuxuan Wu, Dongdong Chen, Yinpeng Chen, Xiyang Dai, Mengchen Liu, Luowei Zhou, Lu Yuan, Yu-Gang Jiang
To avoid significant computational cost incurred by computing self-attention between the large number of local patches in videos, we propose to use very few global tokens (e. g., 6) for a whole video in Transformers to exchange information with 3D-CNNs with a cross-attention mechanism.
no code implementations • 20 Aug 2022 • Jun Yuan, Mengchen Liu, Fengyuan Tian, Shixia Liu
To ease this process, we develop ArchExplorer, a visual analysis method for understanding a neural architecture space and summarizing design principles.
2 code implementations • 21 Jul 2022 • Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, Lu Yuan
It achieves a top-1 accuracy of 84. 8% on ImageNet-1k with only 21M parameters, being comparable to Swin-B pretrained on ImageNet-21k while using 4. 2 times fewer parameters.
Ranked #127 on
Image Classification
on ImageNet
1 code implementation • 7 Jul 2022 • Yunsheng Li, Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen Liu, Pei Yu, Jing Yin, Lu Yuan, Zicheng Liu, Nuno Vasconcelos
We formulate this as a learning problem where the goal is to assign operators to proposals, in the detection head, so that the total computational cost is constrained and the precision is maximized.
no code implementations • CVPR 2023 • Lingchen Meng, Xiyang Dai, Yinpeng Chen, Pengchuan Zhang, Dongdong Chen, Mengchen Liu, JianFeng Wang, Zuxuan Wu, Lu Yuan, Yu-Gang Jiang
Detection Hub further achieves SoTA performance on UODB benchmark with wide variety of datasets.
1 code implementation • CVPR 2022 • Qiankun Liu, Zhentao Tan, Dongdong Chen, Qi Chu, Xiyang Dai, Yinpeng Chen, Mengchen Liu, Lu Yuan, Nenghai Yu
The indices of quantized pixels are used as tokens for the inputs and prediction targets of transformer.
Ranked #6 on
Seeing Beyond the Visible
on KITTI360-EX
no code implementations • 20 Apr 2022 • Lemeng Wu, Mengchen Liu, Yinpeng Chen, Dongdong Chen, Xiyang Dai, Lu Yuan
In this paper, we propose Residual Mixture of Experts (RMoE), an efficient training pipeline for MoE vision transformers on downstream tasks, such as segmentation and detection.
2 code implementations • CVPR 2022 • Jinnian Zhang, Houwen Peng, Kan Wu, Mengchen Liu, Bin Xiao, Jianlong Fu, Lu Yuan
The central idea of MiniViT is to multiplex the weights of consecutive transformer blocks.
Ranked #194 on
Image Classification
on ImageNet
1 code implementation • CVPR 2022 • Rui Wang, Dongdong Chen, Zuxuan Wu, Yinpeng Chen, Xiyang Dai, Mengchen Liu, Yu-Gang Jiang, Luowei Zhou, Lu Yuan
This design is motivated by two observations: 1) transformers learned on image datasets provide decent spatial priors that can ease the learning of video transformers, which are often times computationally-intensive if trained from scratch; 2) discriminative clues, i. e., spatial and temporal information, needed to make correct predictions vary among different videos due to large intra-class and inter-class variations.
Ranked #5 on
Action Recognition
on Diving-48
1 code implementation • 22 Nov 2021 • Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong Huang, Boxin Li, Chunyuan Li, Ce Liu, Mengchen Liu, Zicheng Liu, Yumao Lu, Yu Shi, Lijuan Wang, JianFeng Wang, Bin Xiao, Zhen Xiao, Jianwei Yang, Michael Zeng, Luowei Zhou, Pengchuan Zhang
Computer vision foundation models, which are trained on diverse, large-scale dataset and can be adapted to a wide range of downstream tasks, are critical for this mission to solve real-world computer vision applications.
Ranked #1 on
Action Recognition In Videos
on Kinetics-600
4 code implementations • CVPR 2022 • Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen Liu, Xiaoyi Dong, Lu Yuan, Zicheng Liu
This structure leverages the advantages of MobileNet at local processing and transformer at global interaction.
1 code implementation • ICCV 2021 • Yunsheng Li, Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen Liu, Lu Yuan, Zicheng Liu, Lei Zhang, Nuno Vasconcelos
This paper aims at addressing the problem of substantial performance degradation at extremely low computational cost (e. g. 5M FLOPs on ImageNet classification).
3 code implementations • CVPR 2021 • Xiyang Dai, Yinpeng Chen, Bin Xiao, Dongdong Chen, Mengchen Liu, Lu Yuan, Lei Zhang
In this paper, we present a novel dynamic head framework to unify object detection heads with attentions.
Ranked #1 on
Object Detection
on COCO 2017 val
(AP75 metric)
14 code implementations • ICCV 2021 • Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang
We present in this paper a new architecture, named Convolutional vision Transformer (CvT), that improves Vision Transformer (ViT) in performance and efficiency by introducing convolutions into ViT to yield the best of both designs.
Ranked #3 on
Image Classification
on Oxford-IIIT Pets
1 code implementation • ICLR 2021 • Yunsheng Li, Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Ye Yu, Lu Yuan, Zicheng Liu, Mei Chen, Nuno Vasconcelos
It has two limitations: (a) it increases the number of convolutional weights by K-times, and (b) the joint optimization of dynamic attention and static convolution kernels is challenging.
1 code implementation • NeurIPS 2021 • Junru Wu, Xiyang Dai, Dongdong Chen, Yinpeng Chen, Mengchen Liu, Ye Yu, Zhangyang Wang, Zicheng Liu, Mei Chen, Lu Yuan
We propose a paradigm shift from fitting the whole architecture space using one strong predictor, to progressively fitting a search path towards the high-performance sub-space through a set of weaker predictors.
no code implementations • 1 Jan 2021 • Junru Wu, Xiyang Dai, Dongdong Chen, Yinpeng Chen, Mengchen Liu, Ye Yu, Zhangyang Wang, Zicheng Liu, Mei Chen, Lu Yuan
Rather than expecting a single strong predictor to model the whole space, we seek a progressive line of weak predictors that can connect a path to the best architecture, thus greatly simplifying the learning task of each predictor.
no code implementations • 24 Nov 2020 • Yunsheng Li, Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen Liu, Lu Yuan, Zicheng Liu, Lei Zhang, Nuno Vasconcelos
In this paper, we present MicroNet, which is an efficient convolutional neural network using extremely low computational cost (e. g. 6 MFLOPs on ImageNet classification).
no code implementations • 28 Jul 2020 • Weikai Yang, Zhen Li, Mengchen Liu, Yafeng Lu, Kelei Cao, Ross Maciejewski, Shixia Liu
Concept drift is a phenomenon in which the distribution of a data stream changes over time in unforeseen ways, causing prediction models built on historical data to become inaccurate.
no code implementations • ECCV 2020 • Xiyang Dai, Dong-Dong Chen, Mengchen Liu, Yinpeng Chen, Lu Yuan
One common way is searching on a smaller proxy dataset (e. g., CIFAR-10) and then transferring to the target task (e. g., ImageNet).
2 code implementations • ECCV 2020 • Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dong-Dong Chen, Lu Yuan, Zicheng Liu
Rectified linear units (ReLU) are commonly used in deep neural networks.
no code implementations • 26 Jan 2020 • Kelei Cao, Mengchen Liu, Hang Su, Jing Wu, Jun Zhu, Shixia Liu
The key is to compare and analyze the datapaths of both the adversarial and normal examples.
5 code implementations • CVPR 2020 • Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dong-Dong Chen, Lu Yuan, Zicheng Liu
Light-weight convolutional neural networks (CNNs) suffer performance degradation as their low computational budgets constrain both the depth (number of convolution layers) and the width (number of channels) of CNNs, resulting in limited representation capability.
Ranked #859 on
Image Classification
on ImageNet
no code implementations • 9 Oct 2018 • Mengchen Liu, Shixia Liu, Hang Su, Kelei Cao, Jun Zhu
Deep neural networks (DNNs) are vulnerable to maliciously generated adversarial examples.
no code implementations • 4 Feb 2017 • Shixia Liu, Xiting Wang, Mengchen Liu, Jun Zhu
Interactive model analysis, the process of understanding, diagnosing, and refining a machine learning model with the help of interactive visualization, is very important for users to efficiently solve real-world artificial intelligence and data mining problems.
no code implementations • 24 Apr 2016 • Mengchen Liu, Jiaxin Shi, Zhen Li, Chongxuan Li, Jun Zhu, Shixia Liu
Deep convolutional neural networks (CNNs) have achieved breakthrough performance in many pattern recognition tasks such as image classification.