no code implementations • 11 Nov 2024 • Vladyslav Zalevskyi, Thomas Sanchez, Margaux Roulet, Hélène Lajous, Jordina Aviles Verdera, Jana Hutter, Hamza Kebiri, Meritxell Bach Cuadra
In this work, we investigate how to maximize the out-of-domain (OOD) generalization potential of SynthSeg-based methods in fetal brain MRI.
1 code implementation • 2 Sep 2024 • Rizhong Lin, Hamza Kebiri, Ali Gholipour, Yufei Chen, Jean-Philippe Thiran, Davood Karimi, Meritxell Bach Cuadra
Diffusion Magnetic Resonance Imaging (dMRI) is a non-invasive method for depicting brain microstructure in vivo.
no code implementations • 21 Aug 2024 • Federico Spagnolo, Nataliia Molchanova, Mario Ocampo Pineda, Lester Melie-Garcia, Meritxell Bach Cuadra, Cristina Granziera, Vincent Andrearczyk, Adrien Depeursinge
To date, several methods have been developed to explain deep learning algorithms for classification tasks.
1 code implementation • 8 Jul 2024 • Nataliia Molchanova, Alessandro Cagol, Pedro M. Gordaliza, Mario Ocampo-Pineda, Po-Jui Lu, Matthias Weigel, Xinjie Chen, Adrien Depeursinge, Cristina Granziera, Henning Müller, Meritxell Bach Cuadra
Uncertainty quantification (UQ) has become critical for evaluating the reliability of artificial intelligence systems, especially in medical image segmentation.
1 code implementation • 13 Jun 2024 • Federico Spagnolo, Nataliia Molchanova, Roger Schaer, Meritxell Bach Cuadra, Mario Ocampo Pineda, Lester Melie-Garcia, Cristina Granziera, Vincent Andrearczyk, Adrien Depeursinge
Saliency maps (based on SmoothGrad) in FLAIR showed positive values inside a lesion and negative in its neighborhood.
1 code implementation • 22 Mar 2024 • Vladyslav Zalevskyi, Thomas Sanchez, Margaux Roulet, Jordina Aviles Verddera, Jana Hutter, Hamza Kebiri, Meritxell Bach Cuadra
Segmentation of fetal brain tissue from magnetic resonance imaging (MRI) plays a crucial role in the study of in utero neurodevelopment.
no code implementations • 8 Feb 2024 • Kelly Payette, Céline Steger, Roxane Licandro, Priscille de Dumast, Hongwei Bran Li, Matthew Barkovich, Liu Li, Maik Dannecker, Chen Chen, Cheng Ouyang, Niccolò McConnell, Alina Miron, Yongmin Li, Alena Uus, Irina Grigorescu, Paula Ramirez Gilliland, Md Mahfuzur Rahman Siddiquee, Daguang Xu, Andriy Myronenko, Haoyu Wang, Ziyan Huang, Jin Ye, Mireia Alenyà, Valentin Comte, Oscar Camara, Jean-Baptiste Masson, Astrid Nilsson, Charlotte Godard, Moona Mazher, Abdul Qayyum, Yibo Gao, Hangqi Zhou, Shangqi Gao, Jia Fu, Guiming Dong, Guotai Wang, ZunHyan Rieu, HyeonSik Yang, Minwoo Lee, Szymon Płotka, Michal K. Grzeszczyk, Arkadiusz Sitek, Luisa Vargas Daza, Santiago Usma, Pablo Arbelaez, Wenying Lu, WenHao Zhang, Jing Liang, Romain Valabregue, Anand A. Joshi, Krishna N. Nayak, Richard M. Leahy, Luca Wilhelmi, Aline Dändliker, Hui Ji, Antonio G. Gennari, Anton Jakovčić, Melita Klaić, Ana Adžić, Pavel Marković, Gracia Grabarić, Gregor Kasprian, Gregor Dovjak, Milan Rados, Lana Vasung, Meritxell Bach Cuadra, Andras Jakab
The FeTA Challenge 2022 was able to successfully evaluate and advance generalizability of multi-class fetal brain tissue segmentation algorithms for MRI and it continues to benchmark new algorithms.
1 code implementation • 22 Dec 2023 • Rizhong Lin, Ali Gholipour, Jean-Philippe Thiran, Davood Karimi, Hamza Kebiri, Meritxell Bach Cuadra
However, these models face domain shift challenges when test and train data are from different scanners and protocols, or when the models are applied to data with inherent variations such as the developing brains of infants and children scanned at various ages.
2 code implementations • 15 Nov 2023 • Nataliia Molchanova, Vatsal Raina, Andrey Malinin, Francesco La Rosa, Adrien Depeursinge, Mark Gales, Cristina Granziera, Henning Muller, Mara Graziani, Meritxell Bach Cuadra
The results from a multi-centric MRI dataset of 444 patients demonstrate that our proposed measures more effectively capture model errors at the lesion and patient scales compared to measures that average voxel-scale uncertainty values.
2 code implementations • 8 Nov 2023 • Thomas Sanchez, Oscar Esteban, Yvan Gomez, Alexandre Pron, Mériam Koob, Vincent Dunet, Nadine Girard, Andras Jakab, Elisenda Eixarch, Guillaume Auzias, Meritxell Bach Cuadra
We present FetMRQC, an open-source machine-learning framework for automated image quality assessment and quality control that is robust to domain shifts induced by the heterogeneity of clinical data.
no code implementations • 5 Jul 2023 • Hamza Kebiri, Ali Gholipour, Meritxell Bach Cuadra, Davood Karimi
The new methods can serve many critically important clinical and scientific applications that require accurate and reliable non-invasive segmentation of white matter tracts.
1 code implementation • 14 Apr 2023 • Julie P. Vidal, Lola Danet, Patrice Péran, Jérémie Pariente, Meritxell Bach Cuadra, Natalie M. Zahr, Emmanuel J. Barbeau, Manojkumar Saranathan
HIPS-THOMAS was compared to a convolutional neural network (CNN)-based segmentation method and THOMAS modified for T1w images (T1w-THOMAS).
2 code implementations • 12 Apr 2023 • Thomas Sanchez, Oscar Esteban, Yvan Gomez, Elisenda Eixarch, Meritxell Bach Cuadra
Quality control (QC) has long been considered essential to guarantee the reliability of neuroimaging studies.
1 code implementation • 10 Feb 2023 • Vatsal Raina, Nataliia Molchanova, Mara Graziani, Andrey Malinin, Henning Muller, Meritxell Bach Cuadra, Mark Gales
This work describes a detailed analysis of the recently proposed normalised Dice Similarity Coefficient (nDSC) for binary segmentation tasks as an adaptation of DSC which scales the precision at a fixed recall rate to tackle this bias.
no code implementations • 25 Nov 2022 • Priscille de Dumast, Meritxell Bach Cuadra
Quantitative analysis of in utero human brain development is crucial for abnormal characterization.
no code implementations • 25 Nov 2022 • Priscille de Dumast, Thomas Sanchez, Hélène Lajous, Meritxell Bach Cuadra
Tuning the regularization hyperparameter $\alpha$ in inverse problems has been a longstanding problem.
no code implementations • 11 Nov 2022 • Kay Lächler, Hélène Lajous, Michael Unser, Meritxell Bach Cuadra, Pol del Aguila Pla
In this paper, we sidestep this difficulty by providing a proof of concept of a self-supervised single-volume superresolution framework for T2-weighted FBMRI (SAIR).
1 code implementation • 9 Nov 2022 • Nataliia Molchanova, Vatsal Raina, Andrey Malinin, Francesco La Rosa, Henning Muller, Mark Gales, Cristina Granziera, Mara Graziani, Meritxell Bach Cuadra
This paper focuses on the uncertainty estimation for white matter lesions (WML) segmentation in magnetic resonance imaging (MRI).
no code implementations • 18 Oct 2022 • Tommaso Di Noto, Meritxell Bach Cuadra, Chirine Atat, Eduardo Gamito Teiga, Monika Hegi, Andreas Hottinger, Patric Hagmann, Jonas Richiardi
The weak labels extracted from radiology reports allowed us to increase dataset size more than 3-fold, and improve VGG classification results from 75% to 82% AUC.
no code implementations • 17 Sep 2022 • Athena Taymourtash, Hamza Kebiri, Ernst Schwartz, Karl-Heinz Nenning, Sebastien Tourbier, Gregor Kasprian, Daniela Prayer, Meritxell Bach Cuadra, Georg Langs
Resting-state functional Magnetic Resonance Imaging (fMRI) is a powerful imaging technique for studying functional development of the brain in utero.
no code implementations • 29 Aug 2022 • Hamza Kebiri, Gabriel Girard, Yasser Aleman-Gomez, Thomas Yu, Andras Jakab, Erick Jorge Canales-Rodriguez, Meritxell Bach Cuadra
Interestingly, the fractional anisotropy and, to a lesser extent, the mean diffusivity, are best recovered in missing slices by using the autoencoder trained with SH coefficients.
no code implementations • 16 Aug 2022 • Priscille de Dumast, Hamza Kebiri, Vincent Dunet, Mériam Koob, Meritxell Bach Cuadra
Therefore, CP growth and folding patterns are key indicator in the assessment of the brain development and maturation.
2 code implementations • 30 Jun 2022 • Andrey Malinin, Andreas Athanasopoulos, Muhamed Barakovic, Meritxell Bach Cuadra, Mark J. F. Gales, Cristina Granziera, Mara Graziani, Nikolay Kartashev, Konstantinos Kyriakopoulos, Po-Jui Lu, Nataliia Molchanova, Antonis Nikitakis, Vatsal Raina, Francesco La Rosa, Eli Sivena, Vasileios Tsarsitalidis, Efi Tsompopoulou, Elena Volf
This creates a need to be able to assess how robustly ML models generalize as well as the quality of their uncertainty estimates.
no code implementations • 20 Apr 2022 • Kelly Payette, Hongwei Li, Priscille de Dumast, Roxane Licandro, Hui Ji, Md Mahfuzur Rahman Siddiquee, Daguang Xu, Andriy Myronenko, Hao liu, Yuchen Pei, Lisheng Wang, Ying Peng, Juanying Xie, Huiquan Zhang, Guiming Dong, Hao Fu, Guotai Wang, ZunHyan Rieu, Donghyeon Kim, Hyun Gi Kim, Davood Karimi, Ali Gholipour, Helena R. Torres, Bruno Oliveira, João L. Vilaça, Yang Lin, Netanell Avisdris, Ori Ben-Zvi, Dafna Ben Bashat, Lucas Fidon, Michael Aertsen, Tom Vercauteren, Daniel Sobotka, Georg Langs, Mireia Alenyà, Maria Inmaculada Villanueva, Oscar Camara, Bella Specktor Fadida, Leo Joskowicz, Liao Weibin, Lv Yi, Li Xuesong, Moona Mazher, Abdul Qayyum, Domenec Puig, Hamza Kebiri, Zelin Zhang, Xinyi Xu, Dan Wu, Kuanlun Liao, Yixuan Wu, Jintai Chen, Yunzhi Xu, Li Zhao, Lana Vasung, Bjoern Menze, Meritxell Bach Cuadra, Andras Jakab
Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context.
no code implementations • 29 Jan 2022 • Thomas Yu, Tom Hilbert, Gian Franco Piredda, Arun Joseph, Gabriele Bonanno, Salim Zenkhri, Patrick Omoumi, Meritxell Bach Cuadra, Erick Jorge Canales-Rodríguez, Tobias Kober, Jean-Philippe Thiran
In this paper, we investigate important aspects of the validation of self-supervised algorithms for reconstruction of undersampled MR images: quantitative evaluation of prospective reconstructions, potential differences between prospective and retrospective reconstructions, suitability of commonly used quantitative metrics, and generalizability.
no code implementations • 19 Jan 2022 • Francesco La Rosa, Maxence Wynen, Omar Al-Louzi, Erin S Beck, Till Huelnhagen, Pietro Maggi, Jean-Philippe Thiran, Tobias Kober, Russell T Shinohara, Pascal Sati, Daniel S Reich, Cristina Granziera, Martina Absinta, Meritxell Bach Cuadra
Recently, advanced MS lesional imaging biomarkers such as cortical lesions (CL), the central vein sign (CVS), and paramagnetic rim lesions (PRL), visible in specialized magnetic resonance imaging (MRI) sequences, have shown higher specificity in differential diagnosis.
no code implementations • 22 Nov 2021 • Athena Taymourtash, Hamza Kebiri, Sébastien Tourbier, Ernst Schwartz, Karl-Heinz Nenning, Roxane Licandro, Daniel Sobotka, Hélène Lajous, Priscille de Dumast, Meritxell Bach Cuadra, Georg Langs
Resting-state functional Magnetic Resonance Imaging (fMRI) is a powerful imaging technique for studying functional development of the brain in utero.
no code implementations • 8 Nov 2021 • Priscille de Dumast, Hamza Kebiri, Kelly Payette, Andras Jakab, Hélène Lajous, Meritxell Bach Cuadra
The quantitative assessment of the developing human brain in utero is crucial to fully understand neurodevelopment.
no code implementations • 6 Sep 2021 • Hélène Lajous, Christopher W. Roy, Tom Hilbert, Priscille de Dumast, Sébastien Tourbier, Yasser Alemán-Gómez, Jérôme Yerly, Thomas Yu, Hamza Kebiri, Kelly Payette, Jean-Baptiste Ledoux, Reto Meuli, Patric Hagmann, Andras Jakab, Vincent Dunet, Mériam Koob, Tobias Kober, Matthias Stuber, Meritxell Bach Cuadra
Accurate characterization of in utero human brain maturation is critical as it involves complex and interconnected structural and functional processes that may influence health later in life.
1 code implementation • 10 Mar 2021 • Tommaso Di Noto, Guillaume Marie, Sebastien Tourbier, Yasser Alemán-Gómez, Oscar Esteban, Guillaume Saliou, Meritxell Bach Cuadra, Patric Hagmann, Jonas Richiardi
Here, we present a DL model for aneurysm detection that overcomes the issue with ''weak'' labels: oversized annotations which are considerably faster to create.
no code implementations • 27 Nov 2020 • Tommaso Di Noto, Guillaume Marie, Sébastien Tourbier, Yasser Alemán-Gómez, Guillaume Saliou, Meritxell Bach Cuadra, Patric Hagmann, Jonas Richiardi
We compare two strategies for negative patch sampling that have an increasing level of difficulty for the network and we show how this choice can strongly affect the results.
1 code implementation • 29 Oct 2020 • Kelly Payette, Priscille de Dumast, Hamza Kebiri, Ivan Ezhov, Johannes C. Paetzold, Suprosanna Shit, Asim Iqbal, Romesa Khan, Raimund Kottke, Patrice Grehten, Hui Ji, Levente Lanczi, Marianna Nagy, Monika Beresova, Thi Dao Nguyen, Giancarlo Natalucci, Theofanis Karayannis, Bjoern Menze, Meritxell Bach Cuadra, Andras Jakab
It is critical to quantitatively analyse the developing human fetal brain in order to fully understand neurodevelopment in both normal fetuses and those with congenital disorders.
no code implementations • 23 Oct 2020 • Priscille de Dumast, Hamza Kebiri, Chirine Atat, Vincent Dunet, Mériam Koob, Meritxell Bach Cuadra
The fetal cortical plate undergoes drastic morphological changes throughout early in utero development that can be observed using magnetic resonance (MR) imaging.
no code implementations • 15 Aug 2020 • Francesco La Rosa, Erin S Beck, Ahmed Abdulkadir, Jean-Philippe Thiran, Daniel S. Reich, Pascal Sati, Meritxell Bach Cuadra
The automated detection of cortical lesions (CLs) in patients with multiple sclerosis (MS) is a challenging task that, despite its clinical relevance, has received very little attention.
no code implementations • 10 Sep 2018 • Francesco La Rosa, Mário João Fartaria, Tobias Kober, Jonas Richiardi, Cristina Granziera, Jean-Philippe Thiran, Meritxell Bach Cuadra
In this work, we present a comparison of a shallow and a deep learning architecture for the automated segmentation of white matter lesions in MR images of multiple sclerosis patients.