Search Results for author: Merlin Nimier-David

Found 6 papers, 1 papers with code

A Radiance Field Loss for Fast and Simple Emissive Surface Reconstruction

no code implementations27 Jan 2025 Ziyi Zhang, Nicolas Roussel, Thomas Müller, Tizian Zeltner, Merlin Nimier-David, Fabrice Rousselle, Wenzel Jakob

Building on existing emissive volume reconstruction algorithms, we introduce a subtle yet impactful modification of the loss function requiring changes to only a few lines of code: instead of integrating the radiance field along rays and supervising the resulting images, we project the training images into the scene to directly supervise the spatio-directional radiance field.

Computational Efficiency Surface Reconstruction

Photorealistic Object Insertion with Diffusion-Guided Inverse Rendering

no code implementations19 Aug 2024 Ruofan Liang, Zan Gojcic, Merlin Nimier-David, David Acuna, Nandita Vijaykumar, Sanja Fidler, Zian Wang

The correct insertion of virtual objects in images of real-world scenes requires a deep understanding of the scene's lighting, geometry and materials, as well as the image formation process.

Inverse Rendering Object +1

Compact Neural Graphics Primitives with Learned Hash Probing

no code implementations28 Dec 2023 Towaki Takikawa, Thomas Müller, Merlin Nimier-David, Alex Evans, Sanja Fidler, Alec Jacobson, Alexander Keller

Neural graphics primitives are faster and achieve higher quality when their neural networks are augmented by spatial data structures that hold trainable features arranged in a grid.

Quantization

Learning Radio Environments by Differentiable Ray Tracing

no code implementations30 Nov 2023 Jakob Hoydis, Fayçal Aït Aoudia, Sebastian Cammerer, Florian Euchner, Merlin Nimier-David, Stephan ten Brink, Alexander Keller

Ray tracing (RT) is instrumental in 6G research in order to generate spatially-consistent and environment-specific channel impulse responses (CIRs).

Adaptive Shells for Efficient Neural Radiance Field Rendering

no code implementations16 Nov 2023 Zian Wang, Tianchang Shen, Merlin Nimier-David, Nicholas Sharp, Jun Gao, Alexander Keller, Sanja Fidler, Thomas Müller, Zan Gojcic

We then extract an explicit mesh of a narrow band around the surface, with width determined by the kernel size, and fine-tune the radiance field within this band.

Novel View Synthesis Stochastic Optimization

Cannot find the paper you are looking for? You can Submit a new open access paper.