Search Results for author: Mesay Gemeda Yigezu

Found 7 papers, 1 papers with code

A Unified Framework with Novel Metrics for Evaluating the Effectiveness of XAI Techniques in LLMs

no code implementations6 Mar 2025 Melkamu Abay Mersha, Mesay Gemeda Yigezu, Hassan Shakil, Ali Al shami, Sanghyun Byun, Jugal Kalita

The increasing complexity of LLMs presents significant challenges to their transparency and interpretability, necessitating the use of eXplainable AI (XAI) techniques to enhance trustworthiness and usability.

Evaluating the Effectiveness of XAI Techniques for Encoder-Based Language Models

no code implementations26 Jan 2025 Melkamu Abay Mersha, Mesay Gemeda Yigezu, Jugal Kalita

Our findings show that the model simplification-based XAI method (LIME) consistently outperforms across multiple metrics and models, significantly excelling in HA with a score of 0. 9685 on DeBERTa-xlarge, robustness, and consistency as the complexity of large language models increases.

XLM-R

MasakhaNEWS: News Topic Classification for African languages

1 code implementation19 Apr 2023 David Ifeoluwa Adelani, Marek Masiak, Israel Abebe Azime, Jesujoba Alabi, Atnafu Lambebo Tonja, Christine Mwase, Odunayo Ogundepo, Bonaventure F. P. Dossou, Akintunde Oladipo, Doreen Nixdorf, Chris Chinenye Emezue, sana al-azzawi, Blessing Sibanda, Davis David, Lolwethu Ndolela, Jonathan Mukiibi, Tunde Ajayi, Tatiana Moteu, Brian Odhiambo, Abraham Owodunni, Nnaemeka Obiefuna, Muhidin Mohamed, Shamsuddeen Hassan Muhammad, Teshome Mulugeta Ababu, Saheed Abdullahi Salahudeen, Mesay Gemeda Yigezu, Tajuddeen Gwadabe, Idris Abdulmumin, Mahlet Taye, Oluwabusayo Awoyomi, Iyanuoluwa Shode, Tolulope Adelani, Habiba Abdulganiyu, Abdul-Hakeem Omotayo, Adetola Adeeko, Abeeb Afolabi, Anuoluwapo Aremu, Olanrewaju Samuel, Clemencia Siro, Wangari Kimotho, Onyekachi Ogbu, Chinedu Mbonu, Chiamaka Chukwuneke, Samuel Fanijo, Jessica Ojo, Oyinkansola Awosan, Tadesse Kebede, Toadoum Sari Sakayo, Pamela Nyatsine, Freedmore Sidume, Oreen Yousuf, Mardiyyah Oduwole, Tshinu Tshinu, Ussen Kimanuka, Thina Diko, Siyanda Nxakama, Sinodos Nigusse, Abdulmejid Johar, Shafie Mohamed, Fuad Mire Hassan, Moges Ahmed Mehamed, Evrard Ngabire, Jules Jules, Ivan Ssenkungu, Pontus Stenetorp

Furthermore, we explore several alternatives to full fine-tuning of language models that are better suited for zero-shot and few-shot learning such as cross-lingual parameter-efficient fine-tuning (like MAD-X), pattern exploiting training (PET), prompting language models (like ChatGPT), and prompt-free sentence transformer fine-tuning (SetFit and Cohere Embedding API).

Classification Few-Shot Learning +7

Cannot find the paper you are looking for? You can Submit a new open access paper.