Search Results for author: Mi Luo

Found 5 papers, 2 papers with code

MetaFormer Baselines for Vision

5 code implementations24 Oct 2022 Weihao Yu, Chenyang Si, Pan Zhou, Mi Luo, Yichen Zhou, Jiashi Feng, Shuicheng Yan, Xinchao Wang

By simply applying depthwise separable convolutions as token mixer in the bottom stages and vanilla self-attention in the top stages, the resulting model CAFormer sets a new record on ImageNet-1K: it achieves an accuracy of 85. 5% at 224x224 resolution, under normal supervised training without external data or distillation.

Ranked #57 on Image Classification on ImageNet (using extra training data)

Image Classification

MetaFormer Is Actually What You Need for Vision

12 code implementations CVPR 2022 Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, Shuicheng Yan

Based on this observation, we hypothesize that the general architecture of the Transformers, instead of the specific token mixer module, is more essential to the model's performance.

Image Classification Object Detection +1

No Fear of Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data

no code implementations NeurIPS 2021 Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, Jiashi Feng

Motivated by the above findings, we propose a novel and simple algorithm called Classifier Calibration with Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated gaussian mixture model.

Classifier calibration Federated Learning

MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive Model Selection

no code implementations22 Jan 2020 Mi Luo, Fei Chen, Pengxiang Cheng, Zhenhua Dong, Xiuqiang He, Jiashi Feng, Zhenguo Li

Recommender systems often face heterogeneous datasets containing highly personalized historical data of users, where no single model could give the best recommendation for every user.

Meta-Learning Model Selection +1

Federated Meta-Learning with Fast Convergence and Efficient Communication

no code implementations22 Feb 2018 Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, Xiuqiang He

Statistical and systematic challenges in collaboratively training machine learning models across distributed networks of mobile devices have been the bottlenecks in the real-world application of federated learning.

Federated Learning Meta-Learning +1

Cannot find the paper you are looking for? You can Submit a new open access paper.