5 code implementations • 24 Oct 2022 • Weihao Yu, Chenyang Si, Pan Zhou, Mi Luo, Yichen Zhou, Jiashi Feng, Shuicheng Yan, Xinchao Wang
By simply applying depthwise separable convolutions as token mixer in the bottom stages and vanilla self-attention in the top stages, the resulting model CAFormer sets a new record on ImageNet-1K: it achieves an accuracy of 85. 5% at 224x224 resolution, under normal supervised training without external data or distillation.
Ranked #57 on
Image Classification
on ImageNet
(using extra training data)
12 code implementations • CVPR 2022 • Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, Shuicheng Yan
Based on this observation, we hypothesize that the general architecture of the Transformers, instead of the specific token mixer module, is more essential to the model's performance.
Ranked #9 on
Semantic Segmentation
on DensePASS
no code implementations • NeurIPS 2021 • Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, Jiashi Feng
Motivated by the above findings, we propose a novel and simple algorithm called Classifier Calibration with Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated gaussian mixture model.
no code implementations • 22 Jan 2020 • Mi Luo, Fei Chen, Pengxiang Cheng, Zhenhua Dong, Xiuqiang He, Jiashi Feng, Zhenguo Li
Recommender systems often face heterogeneous datasets containing highly personalized historical data of users, where no single model could give the best recommendation for every user.
no code implementations • 22 Feb 2018 • Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, Xiuqiang He
Statistical and systematic challenges in collaboratively training machine learning models across distributed networks of mobile devices have been the bottlenecks in the real-world application of federated learning.