no code implementations • 30 Mar 2025 • Wenqi Jia, Bolin Lai, Miao Liu, Danfei Xu, James M. Rehg
Understanding and predicting human visuomotor coordination is crucial for applications in robotics, human-computer interaction, and assistive technologies.
1 code implementation • 17 Mar 2025 • Arjun V Sudhakar, Hadi Nekoei, Mathieu Reymond, Miao Liu, Janarthanan Rajendran, Sarath Chandar
Traditional multi-agent reinforcement learning (MARL) systems can develop cooperative strategies through repeated interactions.
no code implementations • 12 Jan 2025 • Wenqi Zhou, Kai Cao, Hao Zheng, Xinyi Zheng, Miao Liu, Per Ola Kristensson, Walterio Mayol-Cuevas, Fan Zhang, Weizhe Lin, Junxiao Shen
Leveraging the advanced text processing capabilities of large language models (LLMs), X-LeBench develops a life-logging simulation pipeline that produces realistic, coherent daily plans aligned with real-world video data.
no code implementations • CVPR 2025 • Zeyi Huang, Yuyang Ji, Xiaofang Wang, Nikhil Mehta, Tong Xiao, DongHyun Lee, Sigmund Vanvalkenburgh, Shengxin Zha, Bolin Lai, Licheng Yu, Ning Zhang, Yong Jae Lee, Miao Liu
Long-form video understanding with Large Vision Language Models is challenged by the need to analyze temporally dispersed yet spatially concentrated key moments within limited context windows.
no code implementations • 27 Dec 2024 • Matthew Riemer, Zahra Ashktorab, Djallel Bouneffouf, Payel Das, Miao Liu, Justin D. Weisz, Murray Campbell
As the research community aims to build better AI assistants that are more dynamic and personalized to the diversity of humans that they interact with, there is increased interest in evaluating the theory of mind capabilities of large language models (LLMs).
no code implementations • CVPR 2025 • Bolin Lai, Felix Juefei-Xu, Miao Liu, Xiaoliang Dai, Nikhil Mehta, Chenguang Zhu, Zeyi Huang, James M. Rehg, Sangmin Lee, Ning Zhang, Tong Xiao
We also introduce a relation regularization method to further disentangle image transformation features from irrelevant contents in exemplar images.
no code implementations • CVPR 2025 • Shiyu Zhao, Zhenting Wang, Felix Juefei-Xu, Xide Xia, Miao Liu, Xiaofang Wang, Mingfu Liang, Ning Zhang, Dimitris N. Metaxas, Licheng Yu
For Scenario II, based on the reduction strategy from G-Search, we design a parametric sigmoid function (P-Sigmoid) to guide the reduction at each layer of the MLLM, whose parameters are optimized by Bayesian Optimization.
1 code implementation • 19 Nov 2024 • Erik Miehling, Michael Desmond, Karthikeyan Natesan Ramamurthy, Elizabeth M. Daly, Pierre Dognin, Jesus Rios, Djallel Bouneffouf, Miao Liu
Achieving this requires first being able to evaluate the degree to which a given model is capable of reflecting various personas.
2 code implementations • 14 Nov 2024 • Liwei Ni, Rui Wang, Miao Liu, Xingyu Meng, Xiaoze Lin, Junfeng Liu, Guojie Luo, Zhufei Chu, Weikang Qian, Xiaoyan Yang, Biwei Xie, Xingquan Li, Huawei Li
This paper introduces OpenLS-DGF, an adaptive logic synthesis dataset generation framework, to enhance machine learning~(ML) applications within the logic synthesis process.
no code implementations • 1 Nov 2024 • Zihong He, Weizhe Lin, Hao Zheng, Fan Zhang, Matt W. Jones, Laurence Aitchison, Xuhai Xu, Miao Liu, Per Ola Kristensson, Junxiao Shen
With the rapid advancement of AI systems, their abilities to store, retrieve, and utilize information over the long term - referred to as long-term memory - have become increasingly significant.
no code implementations • 17 Oct 2024 • Bolin Lai, Sam Toyer, Tushar Nagarajan, Rohit Girdhar, Shengxin Zha, James M. Rehg, Kris Kitani, Kristen Grauman, Ruta Desai, Miao Liu
Predicting future human behavior is an increasingly popular topic in computer vision, driven by the interest in applications such as autonomous vehicles, digital assistants and human-robot interactions.
no code implementations • 16 Sep 2024 • Yifan Wang, David Stevens, Pranay Shah, WenWen Jiang, Miao Liu, Xu Chen, Robert Kuo, Na Li, Boying Gong, Daniel Lee, Jiabo Hu, Ning Zhang, Bob Kamma
The growing demand for AI training data has transformed data annotation into a global industry, but traditional approaches relying on human annotators are often time-consuming, labor-intensive, and prone to inconsistent quality.
3 code implementations • 31 Jul 2024 • Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer Van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, WenWen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, Zhiyu Ma
This paper presents a new set of foundation models, called Llama 3.
Ranked #3 on
Question Answering
on PeerQA
no code implementations • 24 May 2024 • Shuai Zhang, Heshan Devaka Fernando, Miao Liu, Keerthiram Murugesan, Songtao Lu, Pin-Yu Chen, Tianyi Chen, Meng Wang
This paper studies the transfer reinforcement learning (RL) problem where multiple RL problems have different reward functions but share the same underlying transition dynamics.
no code implementations • CVPR 2024 • Yunhao Ge, Yihe Tang, Jiashu Xu, Cem Gokmen, Chengshu Li, Wensi Ai, Benjamin Jose Martinez, Arman Aydin, Mona Anvari, Ayush K Chakravarthy, Hong-Xing Yu, Josiah Wong, Sanjana Srivastava, Sharon Lee, Shengxin Zha, Laurent Itti, Yunzhu Li, Roberto Martín-Martín, Miao Liu, Pengchuan Zhang, Ruohan Zhang, Li Fei-Fei, Jiajun Wu
We introduce the BEHAVIOR Vision Suite (BVS), a set of tools and assets to generate fully customized synthetic data for systematic evaluation of computer vision models, based on the newly developed embodied AI benchmark, BEHAVIOR-1K.
no code implementations • 19 Mar 2024 • Pierre Dognin, Jesus Rios, Ronny Luss, Inkit Padhi, Matthew D Riemer, Miao Liu, Prasanna Sattigeri, Manish Nagireddy, Kush R. Varshney, Djallel Bouneffouf
Developing value-aligned AI agents is a complex undertaking and an ongoing challenge in the field of AI.
no code implementations • 21 Feb 2024 • Chitra Subramanian, Miao Liu, Naweed Khan, Jonathan Lenchner, Aporva Amarnath, Sarathkrishna Swaminathan, Ryan Riegel, Alexander Gray
To enable decision-making under uncertainty and partial observability, we developed a novel probabilistic neuro-symbolic framework, Probabilistic Logical Neural Networks (PLNN), which combines the capabilities of logical reasoning with probabilistic graphical models.
no code implementations • 8 Feb 2024 • David Yan, Winnie Zhang, Luxin Zhang, Anmol Kalia, Dingkang Wang, Ankit Ramchandani, Miao Liu, Albert Pumarola, Edgar Schoenfeld, Elliot Blanchard, Krishna Narni, Yaqiao Luo, Lawrence Chen, Guan Pang, Ali Thabet, Peter Vajda, Amy Bearman, Licheng Yu
Our model is built on top of the state-of-the-art Emu text-to-image model, with the addition of temporal layers to model motion.
no code implementations • 29 Jan 2024 • Ziqi Zhang, Jingzehua Xu, Jinxin Liu, Zifeng Zhuang, Donglin Wang, Miao Liu, Shuai Zhang
Offline reinforcement learning (RL) algorithms can learn better decision-making compared to behavior policies by stitching the suboptimal trajectories to derive more optimal ones.
no code implementations • CVPR 2024 • Wenqi Jia, Miao Liu, Hao Jiang, Ishwarya Ananthabhotla, James M. Rehg, Vamsi Krishna Ithapu, Ruohan Gao
We propose a unified multi-modal framework -- Audio-Visual Conversational Attention (AV-CONV), for the joint prediction of conversation behaviors -- speaking and listening -- for both the camera wearer as well as all other social partners present in the egocentric video.
no code implementations • 6 Dec 2023 • Bolin Lai, Xiaoliang Dai, Lawrence Chen, Guan Pang, James M. Rehg, Miao Liu
Additionally, existing diffusion-based image manipulation models are sub-optimal in controlling the state transition of an action in egocentric image pixel space because of the domain gap.
2 code implementations • CVPR 2024 • Kristen Grauman, Andrew Westbury, Lorenzo Torresani, Kris Kitani, Jitendra Malik, Triantafyllos Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote, Eugene Byrne, Zach Chavis, Joya Chen, Feng Cheng, Fu-Jen Chu, Sean Crane, Avijit Dasgupta, Jing Dong, Maria Escobar, Cristhian Forigua, Abrham Gebreselasie, Sanjay Haresh, Jing Huang, Md Mohaiminul Islam, Suyog Jain, Rawal Khirodkar, Devansh Kukreja, Kevin J Liang, Jia-Wei Liu, Sagnik Majumder, Yongsen Mao, Miguel Martin, Effrosyni Mavroudi, Tushar Nagarajan, Francesco Ragusa, Santhosh Kumar Ramakrishnan, Luigi Seminara, Arjun Somayazulu, Yale Song, Shan Su, Zihui Xue, Edward Zhang, Jinxu Zhang, Angela Castillo, Changan Chen, Xinzhu Fu, Ryosuke Furuta, Cristina Gonzalez, Prince Gupta, Jiabo Hu, Yifei HUANG, Yiming Huang, Weslie Khoo, Anush Kumar, Robert Kuo, Sach Lakhavani, Miao Liu, Mi Luo, Zhengyi Luo, Brighid Meredith, Austin Miller, Oluwatumininu Oguntola, Xiaqing Pan, Penny Peng, Shraman Pramanick, Merey Ramazanova, Fiona Ryan, Wei Shan, Kiran Somasundaram, Chenan Song, Audrey Southerland, Masatoshi Tateno, Huiyu Wang, Yuchen Wang, Takuma Yagi, Mingfei Yan, Xitong Yang, Zecheng Yu, Shengxin Cindy Zha, Chen Zhao, Ziwei Zhao, Zhifan Zhu, Jeff Zhuo, Pablo Arbelaez, Gedas Bertasius, David Crandall, Dima Damen, Jakob Engel, Giovanni Maria Farinella, Antonino Furnari, Bernard Ghanem, Judy Hoffman, C. V. Jawahar, Richard Newcombe, Hyun Soo Park, James M. Rehg, Yoichi Sato, Manolis Savva, Jianbo Shi, Mike Zheng Shou, Michael Wray
We present Ego-Exo4D, a diverse, large-scale multimodal multiview video dataset and benchmark challenge.
no code implementations • 24 Oct 2023 • Shuai Zhang, Hongkang Li, Meng Wang, Miao Liu, Pin-Yu Chen, Songtao Lu, Sijia Liu, Keerthiram Murugesan, Subhajit Chaudhury
This paper provides the first theoretical convergence and sample complexity analysis of the practical setting of DQNs with $\epsilon$-greedy policy.
no code implementations • 11 Oct 2023 • Ziyi Chen, Fankai Xie, Meng Wan, Yang Yuan, Miao Liu, Zongguo Wang, Sheng Meng, Yangang Wang
The prediction of chemical synthesis pathways plays a pivotal role in materials science research.
1 code implementation • 20 Aug 2023 • Hadi Nekoei, Xutong Zhao, Janarthanan Rajendran, Miao Liu, Sarath Chandar
In this work, we show empirically that state-of-the-art ZSC algorithms have poor performance when paired with agents trained with different learning methods, and they require millions of interaction samples to adapt to these new partners.
no code implementations • 6 May 2023 • Bolin Lai, Fiona Ryan, Wenqi Jia, Miao Liu, James M. Rehg
Motivated by this observation, we introduce the first model that leverages both the video and audio modalities for egocentric gaze anticipation.
no code implementations • 30 Mar 2023 • Tyler Malloy, Miao Liu, Matthew D. Riemer, Tim Klinger, Gerald Tesauro, Chris R. Sims
This raises the question of how humans learn to efficiently represent visual information in a manner useful for learning tasks.
no code implementations • 6 Feb 2023 • Shuai Zhang, Meng Wang, Pin-Yu Chen, Sijia Liu, Songtao Lu, Miao Liu
Due to the significant computational challenge of training large-scale graph neural networks (GNNs), various sparse learning techniques have been exploited to reduce memory and storage costs.
no code implementations • 16 Dec 2022 • Bolin Lai, Hongxin Zhang, Miao Liu, Aryan Pariani, Fiona Ryan, Wenqi Jia, Shirley Anugrah Hayati, James M. Rehg, Diyi Yang
We also explore the generalization ability of language models for persuasion modeling and the role of persuasion strategies in predicting social deduction game outcomes.
no code implementations • 28 Oct 2022 • Dong-Ki Kim, Matthew Riemer, Miao Liu, Jakob N. Foerster, Gerald Tesauro, Jonathan P. How
By directly comparing active equilibria to Nash equilibria in these examples, we find that active equilibria find more effective solutions than Nash equilibria, concluding that an active equilibrium is the desired solution for multiagent learning settings.
4 code implementations • 23 Oct 2022 • Heshan Fernando, Han Shen, Miao Liu, Subhajit Chaudhury, Keerthiram Murugesan, Tianyi Chen
Machine learning problems with multiple objective functions appear either in learning with multiple criteria where learning has to make a trade-off between multiple performance metrics such as fairness, safety and accuracy; or, in multi-task learning where multiple tasks are optimized jointly, sharing inductive bias between them.
no code implementations • 8 Aug 2022 • Bolin Lai, Miao Liu, Fiona Ryan, James M. Rehg
To this end, we design the transformer encoder to embed the global context as one additional visual token and further propose a novel Global-Local Correlation (GLC) module to explicitly model the correlation of the global token and each local token.
1 code implementation • 21 Mar 2022 • Wenqi Jia, Miao Liu, James M. Rehg
We introduce the novel problem of anticipating a time series of future hand masks from egocentric video.
1 code implementation • 7 Mar 2022 • Dong-Ki Kim, Matthew Riemer, Miao Liu, Jakob N. Foerster, Michael Everett, Chuangchuang Sun, Gerald Tesauro, Jonathan P. How
An effective approach that has recently emerged for addressing this non-stationarity is for each agent to anticipate the learning of other agents and influence the evolution of future policies towards desirable behavior for its own benefit.
1 code implementation • 1 Mar 2022 • JunKyu Lee, Michael Katz, Don Joven Agravante, Miao Liu, Geraud Nangue Tasse, Tim Klinger, Shirin Sohrabi
Our approach defines options in hierarchical reinforcement learning (HRL) from AIP operators by establishing a correspondence between the state transition model of AI planning problem and the abstract state transition system of a Markov Decision Process (MDP).
no code implementations • 8 Feb 2022 • Ronny Luss, Amit Dhurandhar, Miao Liu
Many works in explainable AI have focused on explaining black-box classification models.
8 code implementations • CVPR 2022 • Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, Miguel Martin, Tushar Nagarajan, Ilija Radosavovic, Santhosh Kumar Ramakrishnan, Fiona Ryan, Jayant Sharma, Michael Wray, Mengmeng Xu, Eric Zhongcong Xu, Chen Zhao, Siddhant Bansal, Dhruv Batra, Vincent Cartillier, Sean Crane, Tien Do, Morrie Doulaty, Akshay Erapalli, Christoph Feichtenhofer, Adriano Fragomeni, Qichen Fu, Abrham Gebreselasie, Cristina Gonzalez, James Hillis, Xuhua Huang, Yifei HUANG, Wenqi Jia, Weslie Khoo, Jachym Kolar, Satwik Kottur, Anurag Kumar, Federico Landini, Chao Li, Yanghao Li, Zhenqiang Li, Karttikeya Mangalam, Raghava Modhugu, Jonathan Munro, Tullie Murrell, Takumi Nishiyasu, Will Price, Paola Ruiz Puentes, Merey Ramazanova, Leda Sari, Kiran Somasundaram, Audrey Southerland, Yusuke Sugano, Ruijie Tao, Minh Vo, Yuchen Wang, Xindi Wu, Takuma Yagi, Ziwei Zhao, Yunyi Zhu, Pablo Arbelaez, David Crandall, Dima Damen, Giovanni Maria Farinella, Christian Fuegen, Bernard Ghanem, Vamsi Krishna Ithapu, C. V. Jawahar, Hanbyul Joo, Kris Kitani, Haizhou Li, Richard Newcombe, Aude Oliva, Hyun Soo Park, James M. Rehg, Yoichi Sato, Jianbo Shi, Mike Zheng Shou, Antonio Torralba, Lorenzo Torresani, Mingfei Yan, Jitendra Malik
We introduce Ego4D, a massive-scale egocentric video dataset and benchmark suite.
1 code implementation • 6 Oct 2021 • Jikun Kang, Miao Liu, Abhinav Gupta, Chris Pal, Xue Liu, Jie Fu
Various automatic curriculum learning (ACL) methods have been proposed to improve the sample efficiency and final performance of deep reinforcement learning (DRL).
no code implementations • 29 Sep 2021 • Ronny Luss, Amit Dhurandhar, Miao Liu
Many works in explainable AI have focused on explaining black-box classification models.
1 code implementation • 20 Sep 2021 • Marwa Abdulhai, Dong-Ki Kim, Matthew Riemer, Miao Liu, Gerald Tesauro, Jonathan P. How
Hierarchical reinforcement learning has focused on discovering temporally extended actions, such as options, that can provide benefits in problems requiring extensive exploration.
no code implementations • 20 May 2021 • Miao Liu, Lingni Ma, Kiran Somasundaram, Yin Li, Kristen Grauman, James M. Rehg, Chao Li
Given a video captured from a first person perspective and the environment context of where the video is recorded, can we recognize what the person is doing and identify where the action occurs in the 3D space?
no code implementations • 26 Nov 2020 • Miao Liu, Dexin Yang, Yan Zhang, Zhaopeng Cui, James M. Rehg, Siyu Tang
We introduce a novel task of reconstructing a time series of second-person 3D human body meshes from monocular egocentric videos.
no code implementations • 23 Nov 2020 • Tyler Malloy, Tim Klinger, Miao Liu, Matthew Riemer, Gerald Tesauro, Chris R. Sims
This paper introduces an information-theoretic constraint on learned policy complexity in the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) reinforcement learning algorithm.
1 code implementation • 31 Oct 2020 • Dong-Ki Kim, Miao Liu, Matthew Riemer, Chuangchuang Sun, Marwa Abdulhai, Golnaz Habibi, Sebastian Lopez-Cot, Gerald Tesauro, Jonathan P. How
A fundamental challenge in multiagent reinforcement learning is to learn beneficial behaviors in a shared environment with other simultaneously learning agents.
no code implementations • 9 Oct 2020 • Tyler Malloy, Chris R. Sims, Tim Klinger, Miao Liu, Matthew Riemer, Gerald Tesauro
We focus on the model-free reinforcement learning (RL) setting and formalize our approach in terms of an information-theoretic constraint on the complexity of learned policies.
no code implementations • 31 May 2020 • Yin Li, Miao Liu, James M. Rehg
Moving beyond the dataset, we propose a novel deep model for joint gaze estimation and action recognition in FPV.
no code implementations • 28 Jan 2020 • Modjtaba Shokrian Zini, Mohammad Pedramfar, Matthew Riemer, Ahmadreza Moradipari, Miao Liu
Coagent networks formalize the concept of arbitrary networks of stochastic agents that collaborate to take actions in a reinforcement learning environment.
Hierarchical Reinforcement Learning
reinforcement-learning
+1
no code implementations • 31 Dec 2019 • Matthew Riemer, Ignacio Cases, Clemens Rosenbaum, Miao Liu, Gerald Tesauro
In this work we note that while this key assumption of the policy gradient theorems of option-critic holds in the tabular case, it is always violated in practice for the deep function approximation setting.
1 code implementation • ECCV 2020 • Miao Liu, Siyu Tang, Yin Li, James Rehg
Motivated by this, we adopt intentional hand movement as a future representation and propose a novel deep network that jointly models and predicts the egocentric hand motion, interaction hotspots and future action.
no code implementations • 25 Sep 2019 • Tyler James Malloy, Matthew Riemer, Miao Liu, Tim Klinger, Gerald Tesauro, Chris R. Sims
We formalize this type of bounded rationality in terms of an information-theoretic constraint on the complexity of policies that agents seek to learn.
no code implementations • 5 Apr 2019 • Miao Liu, Xin Chen, Yun Zhang, Yin Li, James M. Rehg
To this end, we make use of attention modules that learn to highlight regions in the video and aggregate features for recognition.
Ranked #42 on
Action Recognition
on UCF101
no code implementations • 7 Mar 2019 • Dong-Ki Kim, Miao Liu, Shayegan Omidshafiei, Sebastian Lopez-Cot, Matthew Riemer, Golnaz Habibi, Gerald Tesauro, Sami Mourad, Murray Campbell, Jonathan P. How
Collective learning can be greatly enhanced when agents effectively exchange knowledge with their peers.
3 code implementations • ICLR 2019 • Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, Gerald Tesauro
In this work we propose a new conceptualization of the continual learning problem in terms of a temporally symmetric trade-off between transfer and interference that can be optimized by enforcing gradient alignment across examples.
no code implementations • NeurIPS 2018 • Matthew Riemer, Miao Liu, Gerald Tesauro
Building systems that autonomously create temporal abstractions from data is a key challenge in scaling learning and planning in reinforcement learning.
no code implementations • ECCV 2018 • Yin Li, Miao Liu, James M. Rehg
We address the task of jointly determining what a person is doing and where they are looking based on the analysis of video captured by a headworn camera.
no code implementations • 20 May 2018 • Shayegan Omidshafiei, Dong-Ki Kim, Miao Liu, Gerald Tesauro, Matthew Riemer, Christopher Amato, Murray Campbell, Jonathan P. How
The problem of teaching to improve agent learning has been investigated by prior works, but these approaches make assumptions that prevent application of teaching to general multiagent problems, or require domain expertise for problems they can apply to.
no code implementations • ICLR 2018 • Xiaoxiao Guo, Shiyu Chang, Mo Yu, Miao Liu, Gerald Tesauro
In this paper, we consider a realistic and more difficult sce- nario where a reinforcement learning agent only has access to the state sequences of an expert, while the expert actions are not available.
no code implementations • 11 Dec 2017 • Miao Liu, Marlos C. Machado, Gerald Tesauro, Murray Campbell
Eigenoptions (EOs) have been recently introduced as a promising idea for generating a diverse set of options through the graph Laplacian, having been shown to allow efficient exploration.
Efficient Exploration
Hierarchical Reinforcement Learning
+2
1 code implementation • ICLR 2018 • Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, Murray Campbell
Options in reinforcement learning allow agents to hierarchically decompose a task into subtasks, having the potential to speed up learning and planning.
no code implementations • 24 Jul 2017 • Miao Liu, Kavinayan Sivakumar, Shayegan Omidshafiei, Christopher Amato, Jonathan P. How
We implement two variants of multi-robot Search and Rescue (SAR) domains (with and without obstacles) on hardware to demonstrate the learned policies can effectively control a team of distributed robots to cooperate in a partially observable stochastic environment.
2 code implementations • 26 Mar 2017 • Yu Fan Chen, Michael Everett, Miao Liu, Jonathan P. How
For robotic vehicles to navigate safely and efficiently in pedestrian-rich environments, it is important to model subtle human behaviors and navigation rules (e. g., passing on the right).
no code implementations • 26 Sep 2016 • Yu Fan Chen, Miao Liu, Michael Everett, Jonathan P. How
Finding feasible, collision-free paths for multiagent systems can be challenging, particularly in non-communicating scenarios where each agent's intent (e. g. goal) is unobservable to the others.
Multiagent Systems
no code implementations • 1 May 2015 • Miao Liu, Christopher Amato, Xuejun Liao, Lawrence Carin, Jonathan P. How
Expectation maximization (EM) has recently been shown to be an efficient algorithm for learning finite-state controllers (FSCs) in large decentralized POMDPs (Dec-POMDPs).
1 code implementation • NeurIPS 2013 • Trevor Campbell, Miao Liu, Brian Kulis, Jonathan P. How, Lawrence Carin
This paper presents a novel algorithm, based upon the dependent Dirichlet process mixture model (DDPMM), for clustering batch-sequential data containing an unknown number of evolving clusters.