1 code implementation • 6 Dec 2022 • Vajira Thambawita, Steven A. Hicks, Andrea M. Storås, Thu Nguyen, Jorunn M. Andersen, Oliwia Witczak, Trine B. Haugen, Hugo L. Hammer, Pål Halvorsen, Michael A. Riegler
A manual assessment of sperm motility requires microscopy observation, which is challenging due to the fast-moving spermatozoa in the field of view.
1 code implementation • 30 Nov 2022 • Vajira Thambawita, Andrea M. Storås, Steven A. Hicks, Pål Halvorsen, Michael A. Riegler
We proposed two approaches; one using only the CT scans to make predictions and another using a combination of the CT and PET scans.
no code implementations • 11 Oct 2022 • Thu Nguyen, Rabindra Khadka, Nhan Phan, Anis Yazidi, Pål Halvorsen, Michael A. Riegler
For many use cases, combining information from different datasets can be of interest to improve a machine learning model's performance, especially when the number of samples from at least one of the datasets is small.
1 code implementation • 27 Jul 2022 • Sidney Pontes-Filho, Kristoffer Olsen, Anis Yazidi, Michael A. Riegler, Pål Halvorsen, Stefano Nichele
We evaluate a method to evolve a biologically-inspired artificial neural network that learns from environment reactions named Neuroevolution of Artificial General Intelligence (NAGI), a framework for low-level AGI.
no code implementations • 3 Jun 2022 • Lena Maier-Hein, Annika Reinke, Patrick Godau, Minu D. Tizabi, Evangelia Christodoulou, Ben Glocker, Fabian Isensee, Jens Kleesiek, Michal Kozubek, Mauricio Reyes, Michael A. Riegler, Manuel Wiesenfarth, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Emre Kavur, Tim Rädsch, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Peter Bankhead, Arriel Benis, M. Jorge Cardoso, Veronika Cheplygina, Beth Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Florian Kofler, Annette Kopp-Schneider, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, David Moher, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Nasir Rajpoot, Nicola Rieke, Julio Saez-Rodriguez, Clarisa Sánchez Gutiérrez, Shravya Shetty, Maarten van Smeden, Carole H. Sudre, Ronald M. Summers, Abdel A. Taha, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Paul F. Jäger
Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem.
1 code implementation • 30 May 2022 • Vladimir Monakhov, Vajira Thambawita, Pål Halvorsen, Michael A. Riegler
In this paper, we explore the capabilities of the Hierarchical Temporal Memory (HTM) algorithm to perform anomaly detection in videos, as it has favorable properties such as noise tolerance and online learning which combats concept drift.
1 code implementation • 30 May 2022 • Jan Andre Fagereng, Vajira Thambawita, Andrea M. Storås, Sravanthi Parasa, Thomas de Lange, Pål Halvorsen, Michael A. Riegler
Early identification of a polyp in the lower gastrointestinal (GI) tract can lead to prevention of life-threatening colorectal cancer.
1 code implementation • 30 May 2022 • Birk Torpmann-Hagen, Vajira Thambawita, Kyrre Glette, Pål Halvorsen, Michael A. Riegler
Generalizability is seen as one of the major challenges in deep learning, in particular in the domain of medical imaging, where a change of hospital or in imaging routines can lead to a complete failure of a model.
no code implementations • 9 May 2022 • Andrea M. Storås, Anders Åsberg, Pål Halvorsen, Michael A. Riegler, Inga Strümke
Tacrolimus is one of the cornerstone immunosuppressive drugs in most transplantation centers worldwide following solid organ transplantation.
no code implementations • 24 Feb 2022 • Sharib Ali, Noha Ghatwary, Debesh Jha, Ece Isik-Polat, Gorkem Polat, Chen Yang, Wuyang Li, Adrian Galdran, Miguel-Ángel González Ballester, Vajira Thambawita, Steven Hicks, Sahadev Poudel, Sang-Woong Lee, Ziyi Jin, Tianyuan Gan, Chenghui Yu, Jiangpeng Yan, Doyeob Yeo, Hyunseok Lee, Nikhil Kumar Tomar, Mahmood Haithmi, Amr Ahmed, Michael A. Riegler, Christian Daul, Pål Halvorsen, Jens Rittscher, Osama E. Salem, Dominique Lamarque, Renato Cannizzaro, Stefano Realdon, Thomas de Lange, James E. East
Polyps are well-known cancer precursors identified by colonoscopy.
no code implementations • 22 Nov 2021 • Syed Zohaib Hassan, Kashif Ahmad, Michael A. Riegler, Steven Hicks, Nicola Conci, Paal Halvorsen, Ala Al-Fuqaha
The Visual Sentiment Analysis task is being offered for the first time at MediaEval.
no code implementations • 20 Nov 2021 • Abhishek Srivastava, Sukalpa Chanda, Debesh Jha, Michael A. Riegler, Pål Halvorsen, Dag Johansen, Umapada Pal
We develop progressive alternating attention dense (PAAD) blocks, which construct a guiding attention map (GAM) after every convolutional layer in the dense blocks using features from all scales.
no code implementations • 21 Oct 2021 • Imanol Luengo, Maria Grammatikopoulou, Rahim Mohammadi, Chris Walsh, Chinedu Innocent Nwoye, Deepak Alapatt, Nicolas Padoy, Zhen-Liang Ni, Chen-Chen Fan, Gui-Bin Bian, Zeng-Guang Hou, Heonjin Ha, Jiacheng Wang, Haojie Wang, Dong Guo, Lu Wang, Guotai Wang, Mobarakol Islam, Bharat Giddwani, Ren Hongliang, Theodoros Pissas, Claudio Ravasio, Martin Huber, Jeremy Birch, Joan M. Nunez Do Rio, Lyndon Da Cruz, Christos Bergeles, Hongyu Chen, Fucang Jia, Nikhil KumarTomar, Debesh Jha, Michael A. Riegler, Pal Halvorsen, Sophia Bano, Uddhav Vaghela, Jianyuan Hong, Haili Ye, Feihong Huang, Da-Han Wang, Danail Stoyanov
In 2020, we released pixel-wise semantic annotations for anatomy and instruments for 4670 images sampled from 25 videos of the CATARACTS training set.
no code implementations • 2 Sep 2021 • Andrea M. Storås, Inga Strümke, Michael A. Riegler, Jakob Grauslund, Hugo L. Hammer, Anis Yazidi, Pål Halvorsen, Kjell G. Gundersen, Tor P. Utheim, Catherine Jackson
Although the term `AI' is commonly used, recent success in its applications to medicine is mainly due to advancements in the sub-field of machine learning, which has been used to automatically classify images and predict medical outcomes.
1 code implementation • 26 Jul 2021 • Debesh Jha, Pia H. Smedsrud, Dag Johansen, Thomas de Lange, Håvard D. Johansen, Pål Halvorsen, Michael A. Riegler
To explore the generalization capability of ResUNet++ on different publicly available polyp datasets, so that it could be used in a real-world setting, we performed an extensive cross-dataset evaluation.
Ranked #1 on
Medical Image Segmentation
on CVC-ColonDB
(using extra training data)
no code implementations • 5 Jul 2021 • Debesh Jha, Sharib Ali, Nikhil Kumar Tomar, Michael A. Riegler, Dag Johansen, Håvard D. Johansen, Pål Halvorsen
Minimally invasive surgery is a surgical intervention used to examine the organs inside the abdomen and has been widely used due to its effectiveness over open surgery.
Ranked #1 on
Medical Image Segmentation
on ROBUST-MIS
1 code implementation • 1 Jul 2021 • Vajira Thambawita, Steven A. Hicks, Pål Halvorsen, Michael A. Riegler
For our contribution to the EndoCV 2021 segmentation challenge, we propose two separate approaches.
1 code implementation • 29 Jun 2021 • Vajira Thambawita, Pegah Salehi, Sajad Amouei Sheshkal, Steven A. Hicks, Hugo L. Hammer, Sravanthi Parasa, Thomas de Lange, Pål Halvorsen, Michael A. Riegler
The pipeline is evaluated using qualitative and quantitative comparisons between real and synthetic data to show that the style transfer technique used in our pipeline significantly improves the quality of the generated data and our method is better than other state-of-the-art GANs to prepare synthetic images when the size of training datasets are limited.
2 code implementations • 8 Jun 2021 • Sharib Ali, Debesh Jha, Noha Ghatwary, Stefano Realdon, Renato Cannizzaro, Osama E. Salem, Dominique Lamarque, Christian Daul, Michael A. Riegler, Kim V. Anonsen, Andreas Petlund, Pål Halvorsen, Jens Rittscher, Thomas de Lange, James E. East
To our knowledge, this is the most comprehensive detection and pixel-level segmentation dataset curated by a team of computational scientists and expert gastroenterologists.
no code implementations • 6 Jun 2021 • Rabindra Khadga, Debesh Jha, Steven Hicks, Vajira Thambawita, Michael A. Riegler, Sharib Ali, Pål Halvorsen
To our knowledge, this is the first work that exploits iMAML for medical image segmentation and explores the strength of the model on scenarios such as meta-training on unique and mixed instances of lesion datasets.
1 code implementation • 16 May 2021 • Abhishek Srivastava, Debesh Jha, Sukalpa Chanda, Umapada Pal, Håvard D. Johansen, Dag Johansen, Michael A. Riegler, Sharib Ali, Pål Halvorsen
The proposed MSRF-Net allows to capture object variabilities and provides improved results on different biomedical datasets.
Ranked #3 on
Medical Image Segmentation
on 2018 Data Science Bowl
1 code implementation • 22 Apr 2021 • Debesh Jha, Nikhil Kumar Tomar, Sharib Ali, Michael A. Riegler, Håvard D. Johansen, Dag Johansen, Thomas de Lange, Pål Halvorsen
To utilize automated methods in clinical settings, it is crucial to design lightweight models with low latency such that they can be integrated with low-end endoscope hardware devices.
Ranked #1 on
Medical Image Segmentation
on KvasirCapsule-SEG
Colorectal Polyps Characterization
Instrument Recognition
+3
1 code implementation • 31 Mar 2021 • Nikhil Kumar Tomar, Debesh Jha, Michael A. Riegler, Håvard D. Johansen, Dag Johansen, Jens Rittscher, Pål Halvorsen, Sharib Ali
We propose a novel architecture called feedback attention network (FANet) that unifies the previous epoch mask with the feature map of the current training epoch.
Ranked #1 on
Medical Image Segmentation
on EM
1 code implementation • 6 Jan 2021 • Debesh Jha, Anis Yazidi, Michael A. Riegler, Dag Johansen, Håvard D. Johansen, Pål Halvorsen
Deep Neural Networks (DNNs) have become the de-facto standard in computer vision, as well as in many other pattern recognition tasks.
no code implementations • 30 Dec 2020 • Debesh Jha, Steven A. Hicks, Krister Emanuelsen, Håvard Johansen, Dag Johansen, Thomas de Lange, Michael A. Riegler, Pål Halvorsen
Colorectal cancer is the third most common cause of cancer worldwide.
1 code implementation • 30 Dec 2020 • Nikhil Kumar Tomar, Debesh Jha, Sharib Ali, Håvard D. Johansen, Dag Johansen, Michael A. Riegler, Pål Halvorsen
Colonoscopy is the gold standard for examination and detection of colorectal polyps.
1 code implementation • 14 Dec 2020 • Vajira Thambawita, Steven Hicks, Pål Halvorsen, Michael A. Riegler
Segmentation of findings in the gastrointestinal tract is a challenging but also an important task which is an important building stone for sufficient automatic decision support systems.
no code implementations • 2 Dec 2020 • Olav A. Nergard Rongved, Steven A. Hicks, Vajira Thambawita, Hakon K. Stensland, Evi Zouganeli, Dag Johansen, Michael A. Riegler, Pal Halvorsen
The trade-off is a slightly lower precision compared to the current state-of-the-art, which has higher latency and performs better when a less accurate time estimation can be accepted.
Ranked #7 on
Action Spotting
on SoccerNet
1 code implementation • 15 Nov 2020 • Debesh Jha, Sharib Ali, Nikhil Kumar Tomar, Håvard D. Johansen, Dag D. Johansen, Jens Rittscher, Michael A. Riegler, Pål Halvorsen
Benchmarking of novel methods can provide a direction to the development of automated polyp detection and segmentation tasks.
Colorectal Polyps Characterization
Medical Image Segmentation
+3
1 code implementation • 23 Oct 2020 • Debesh Jha, Sharib Ali, Krister Emanuelsen, Steven A. Hicks, VajiraThambawita, Enrique Garcia-Ceja, Michael A. Riegler, Thomas de Lange, Peter T. Schmidt, Håvard D. Johansen, Dag Johansen, Pål Halvorsen
Additionally, we provide a baseline for the segmentation of the GI tools to promote research and algorithm development.
Ranked #2 on
Medical Image Segmentation
on Kvasir-Instrument
3 code implementations • 8 Jun 2020 • Debesh Jha, Michael A. Riegler, Dag Johansen, Pål Halvorsen, Håvard D. Johansen
The encouraging results, produced on various medical image segmentation datasets, show that DoubleU-Net can be used as a strong baseline for both medical image segmentation and cross-dataset evaluation testing to measure the generalizability of Deep Learning (DL) models.
no code implementations • 8 May 2020 • Vajira Thambawita, Debesh Jha, Hugo Lewi Hammer, Håvard D. Johansen, Dag Johansen, Pål Halvorsen, Michael A. Riegler
A clear understanding of evaluation metrics and machine learning models with cross datasets is crucial to bring research in the field to a new quality level.
no code implementations • 27 Apr 2020 • Hugo L. Hammer, Anis Yazidi, Michael A. Riegler, Håvard Rue
The MSE is decomposed in tracking variance and bias and novel and efficient procedures to estimate these quantities are presented.
no code implementations • 23 Mar 2020 • Tobias Ross, Annika Reinke, Peter M. Full, Martin Wagner, Hannes Kenngott, Martin Apitz, Hellena Hempe, Diana Mindroc Filimon, Patrick Scholz, Thuy Nuong Tran, Pierangela Bruno, Pablo Arbeláez, Gui-Bin Bian, Sebastian Bodenstedt, Jon Lindström Bolmgren, Laura Bravo-Sánchez, Hua-Bin Chen, Cristina González, Dong Guo, Pål Halvorsen, Pheng-Ann Heng, Enes Hosgor, Zeng-Guang Hou, Fabian Isensee, Debesh Jha, Tingting Jiang, Yueming Jin, Kadir Kirtac, Sabrina Kletz, Stefan Leger, Zhixuan Li, Klaus H. Maier-Hein, Zhen-Liang Ni, Michael A. Riegler, Klaus Schoeffmann, Ruohua Shi, Stefanie Speidel, Michael Stenzel, Isabell Twick, Gutai Wang, Jiacheng Wang, Liansheng Wang, Lu Wang, Yu-Jie Zhang, Yan-Jie Zhou, Lei Zhu, Manuel Wiesenfarth, Annette Kopp-Schneider, Beat P. Müller-Stich, Lena Maier-Hein
The validation of the competing methods for the three tasks (binary segmentation, multi-instance detection and multi-instance segmentation) was performed in three different stages with an increasing domain gap between the training and the test data.
6 code implementations • 16 Nov 2019 • Debesh Jha, Pia H. Smedsrud, Michael A. Riegler, Dag Johansen, Thomas de Lange, Pal Halvorsen, Havard D. Johansen
Accurate computer-aided polyp detection and segmentation during colonoscopy examinations can help endoscopists resect abnormal tissue and thereby decrease chances of polyps growing into cancer.
no code implementations • 16 Nov 2019 • Debesh Jha, Pia H. Smedsrud, Michael A. Riegler, Pål Halvorsen, Thomas de Lange, Dag Johansen, Håvard D. Johansen
In this paper, we present Kvasir-SEG: an open-access dataset of gastrointestinal polyp images and corresponding segmentation masks, manually annotated by a medical doctor and then verified by an experienced gastroenterologist.
Ranked #1 on
Polyp Segmentation
on Kvasir-SEG
(DSC metric)
no code implementations • 29 Oct 2019 • Steven A. Hicks, Jorunn M. Andersen, Oliwia Witczak, Vajira Thambawita, Påll Halvorsen, Hugo L. Hammer, Trine B. Haugen, Michael A. Riegler
In the field of male human reproduction, clinical and biological data are not used to its fullest potential.