no code implementations • 4 Feb 2024 • Michael Klamkin, Mathieu Tanneau, Pascal Van Hentenryck
This paper introduces Dual Interior Point Learning (DIPL) and Dual Supergradient Learning (DSL) to learn dual feasible solutions to parametric linear programs with bounded variables, which are pervasive across many industries.
no code implementations • 16 Aug 2022 • Michael Klamkin, Mathieu Tanneau, Terrence W. K. Mak, Pascal Van Hentenryck
This paper considers optimization proxies for Optimal Power Flow (OPF), i. e., machine-learning models that approximate the input/output relationship of OPF.
no code implementations • 2 Apr 2022 • Neil Barry, Minas Chatzos, Wenbo Chen, Dahye Han, Chaofan Huang, Roshan Joseph, Michael Klamkin, Seonho Park, Mathieu Tanneau, Pascal Van Hentenryck, Shangkun Wang, Hanyu Zhang, Haoruo Zhao
The transition of the electrical power grid from fossil fuels to renewable sources of energy raises fundamental challenges to the market-clearing algorithms that drive its operations.
Uncertainty Quantification Vocal Bursts Intensity Prediction