no code implementations • 22 Aug 2024 • Irina-Elena Veliche, Zhuangqun Huang, Vineeth Ayyat Kochaniyan, Fuchun Peng, Ozlem Kalinli, Michael L. Seltzer
The current public datasets for speech recognition (ASR) tend not to focus specifically on the fairness aspect, such as performance across different demographic groups.
2 code implementations • 31 Jul 2024 • Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer Van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, WenWen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, Zhiyu Ma
This paper presents a new set of foundation models, called Llama 3.
Ranked #3 on
Multi-task Language Understanding
on MMLU
no code implementations • 19 Sep 2023 • Egor Lakomkin, Chunyang Wu, Yassir Fathullah, Ozlem Kalinli, Michael L. Seltzer, Christian Fuegen
Overall, we demonstrate that by only adding a handful number of trainable parameters via adapters, we can unlock contextualized speech recognition capability for the pretrained LLM while keeping the same text-only input functionality.
no code implementations • 22 Jul 2023 • Suyoun Kim, Akshat Shrivastava, Duc Le, Ju Lin, Ozlem Kalinli, Michael L. Seltzer
End-to-end (E2E) spoken language understanding (SLU) systems that generate a semantic parse from speech have become more promising recently.
no code implementations • 15 Dec 2022 • Ke Li, Jay Mahadeokar, Jinxi Guo, Yangyang Shi, Gil Keren, Ozlem Kalinli, Michael L. Seltzer, Duc Le
Experiments on Librispeech and in-house data show relative WER reductions (WERRs) from 3% to 5% with a slight increase in model size and negligible extra token emission latency compared with fast-slow encoder based transducer.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
no code implementations • 10 Nov 2022 • Andros Tjandra, Nayan Singhal, David Zhang, Ozlem Kalinli, Abdelrahman Mohamed, Duc Le, Michael L. Seltzer
Later, we use our optimal tokenization strategy to train multiple embedding and output model to further improve our result.
no code implementations • 2 Nov 2022 • Duc Le, Frank Seide, Yuhao Wang, Yang Li, Kjell Schubert, Ozlem Kalinli, Michael L. Seltzer
We show how factoring the RNN-T's output distribution can significantly reduce the computation cost and power consumption for on-device ASR inference with no loss in accuracy.
no code implementations • 4 Apr 2022 • Duc Le, Akshat Shrivastava, Paden Tomasello, Suyoun Kim, Aleksandr Livshits, Ozlem Kalinli, Michael L. Seltzer
We propose a novel deliberation-based approach to end-to-end (E2E) spoken language understanding (SLU), where a streaming automatic speech recognition (ASR) model produces the first-pass hypothesis and a second-pass natural language understanding (NLU) component generates the semantic parse by conditioning on both ASR's text and audio embeddings.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+6
no code implementations • 28 Jan 2022 • Antoine Bruguier, Duc Le, Rohit Prabhavalkar, Dangna Li, Zhe Liu, Bo wang, Eun Chang, Fuchun Peng, Ozlem Kalinli, Michael L. Seltzer
We propose Neural-FST Class Language Model (NFCLM) for end-to-end speech recognition, a novel method that combines neural network language models (NNLMs) and finite state transducers (FSTs) in a mathematically consistent framework.
no code implementations • 11 Oct 2021 • Suyoun Kim, Duc Le, Weiyi Zheng, Tarun Singh, Abhinav Arora, Xiaoyu Zhai, Christian Fuegen, Ozlem Kalinli, Michael L. Seltzer
Measuring automatic speech recognition (ASR) system quality is critical for creating user-satisfying voice-driven applications.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+4
no code implementations • 16 Jun 2021 • Varun Nagaraja, Yangyang Shi, Ganesh Venkatesh, Ozlem Kalinli, Michael L. Seltzer, Vikas Chandra
On-device speech recognition requires training models of different sizes for deploying on devices with various computational budgets.
no code implementations • 6 Apr 2021 • Jay Mahadeokar, Yangyang Shi, Yuan Shangguan, Chunyang Wu, Alex Xiao, Hang Su, Duc Le, Ozlem Kalinli, Christian Fuegen, Michael L. Seltzer
In order to achieve flexible and better accuracy and latency trade-offs, the following techniques are used.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • 6 Apr 2021 • Yuan Shangguan, Rohit Prabhavalkar, Hang Su, Jay Mahadeokar, Yangyang Shi, Jiatong Zhou, Chunyang Wu, Duc Le, Ozlem Kalinli, Christian Fuegen, Michael L. Seltzer
As speech-enabled devices such as smartphones and smart speakers become increasingly ubiquitous, there is growing interest in building automatic speech recognition (ASR) systems that can run directly on-device; end-to-end (E2E) speech recognition models such as recurrent neural network transducers and their variants have recently emerged as prime candidates for this task.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • 5 Apr 2021 • Duc Le, Mahaveer Jain, Gil Keren, Suyoun Kim, Yangyang Shi, Jay Mahadeokar, Julian Chan, Yuan Shangguan, Christian Fuegen, Ozlem Kalinli, Yatharth Saraf, Michael L. Seltzer
How to leverage dynamic contextual information in end-to-end speech recognition has remained an active research area.
no code implementations • 5 Apr 2021 • Yangyang Shi, Varun Nagaraja, Chunyang Wu, Jay Mahadeokar, Duc Le, Rohit Prabhavalkar, Alex Xiao, Ching-Feng Yeh, Julian Chan, Christian Fuegen, Ozlem Kalinli, Michael L. Seltzer
DET gets similar accuracy as a baseline model with better latency on a large in-house data set by assigning a lightweight encoder for the beginning part of one utterance and a full-size encoder for the rest.
no code implementations • 5 Apr 2021 • Suyoun Kim, Abhinav Arora, Duc Le, Ching-Feng Yeh, Christian Fuegen, Ozlem Kalinli, Michael L. Seltzer
We define SemDist as the distance between a reference and hypothesis pair in a sentence-level embedding space.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+15
no code implementations • 23 Feb 2021 • Ganesh Venkatesh, Alagappan Valliappan, Jay Mahadeokar, Yuan Shangguan, Christian Fuegen, Michael L. Seltzer, Vikas Chandra
Recurrent transducer models have emerged as a promising solution for speech recognition on the current and next generation smart devices.
no code implementations • 16 Nov 2020 • Duc Le, Gil Keren, Julian Chan, Jay Mahadeokar, Christian Fuegen, Michael L. Seltzer
End-to-end models in general, and Recurrent Neural Network Transducer (RNN-T) in particular, have gained significant traction in the automatic speech recognition community in the last few years due to their simplicity, compactness, and excellent performance on generic transcription tasks.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
no code implementations • 5 Nov 2020 • Jay Mahadeokar, Yuan Shangguan, Duc Le, Gil Keren, Hang Su, Thong Le, Ching-Feng Yeh, Christian Fuegen, Michael L. Seltzer
There is a growing interest in the speech community in developing Recurrent Neural Network Transducer (RNN-T) models for automatic speech recognition (ASR) applications.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
no code implementations • 3 Nov 2020 • Ching-Feng Yeh, Yongqiang Wang, Yangyang Shi, Chunyang Wu, Frank Zhang, Julian Chan, Michael L. Seltzer
Attention-based models have been gaining popularity recently for their strong performance demonstrated in fields such as machine translation and automatic speech recognition.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+3
no code implementations • 26 Oct 2020 • Suyoun Kim, Yuan Shangguan, Jay Mahadeokar, Antoine Bruguier, Christian Fuegen, Michael L. Seltzer, Duc Le
Recurrent Neural Network Transducer (RNN-T), like most end-to-end speech recognition model architectures, has an implicit neural network language model (NNLM) and cannot easily leverage unpaired text data during training.
no code implementations • 18 May 2020 • Yangyang Shi, Yongqiang Wang, Chunyang Wu, Christian Fuegen, Frank Zhang, Duc Le, Ching-Feng Yeh, Michael L. Seltzer
Transformers, originally proposed for natural language processing (NLP) tasks, have recently achieved great success in automatic speech recognition (ASR).
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+1
no code implementations • 27 Nov 2019 • Yi-Chen Chen, Zhaojun Yang, Ching-Feng Yeh, Mahaveer Jain, Michael L. Seltzer
As one of the major sources in speech variability, accents have posed a grand challenge to the robustness of speech recognition systems.
no code implementations • 5 Nov 2019 • Mahaveer Jain, Kjell Schubert, Jay Mahadeokar, Ching-Feng Yeh, Kaustubh Kalgaonkar, Anuroop Sriram, Christian Fuegen, Michael L. Seltzer
Neural transducer-based systems such as RNN Transducers (RNN-T) for automatic speech recognition (ASR) blend the individual components of a traditional hybrid ASR systems (acoustic model, language model, punctuation model, inverse text normalization) into one single model.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+4
1 code implementation • 28 Oct 2019 • Ching-Feng Yeh, Jay Mahadeokar, Kaustubh Kalgaonkar, Yongqiang Wang, Duc Le, Mahaveer Jain, Kjell Schubert, Christian Fuegen, Michael L. Seltzer
We explore options to use Transformer networks in neural transducer for end-to-end speech recognition.
no code implementations • 22 Oct 2019 • Yongqiang Wang, Abdel-rahman Mohamed, Duc Le, Chunxi Liu, Alex Xiao, Jay Mahadeokar, Hongzhao Huang, Andros Tjandra, Xiaohui Zhang, Frank Zhang, Christian Fuegen, Geoffrey Zweig, Michael L. Seltzer
We propose and evaluate transformer-based acoustic models (AMs) for hybrid speech recognition.
Ranked #28 on
Speech Recognition
on LibriSpeech test-other
(using extra training data)
no code implementations • 22 Oct 2019 • Duc Le, Thilo Koehler, Christian Fuegen, Michael L. Seltzer
Grapheme-based acoustic modeling has recently been shown to outperform phoneme-based approaches in both hybrid and end-to-end automatic speech recognition (ASR), even on non-phonemic languages like English.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
no code implementations • 2 Oct 2019 • Duc Le, Xiaohui Zhang, Weiyi Zheng, Christian Fügen, Geoffrey Zweig, Michael L. Seltzer
There is an implicit assumption that traditional hybrid approaches for automatic speech recognition (ASR) cannot directly model graphemes and need to rely on phonetic lexicons to get competitive performance, especially on English which has poor grapheme-phoneme correspondence.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
no code implementations • 5 Dec 2018 • Zhehuai Chen, Mahaveer Jain, Yongqiang Wang, Michael L. Seltzer, Christian Fuegen
In this work, we focus on contextual speech recognition, which is particularly challenging for E2E models because it introduces significant mismatch between training and test data.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+2
1 code implementation • 6 Nov 2017 • Suyoun Kim, Michael L. Seltzer, Jinyu Li, Rui Zhao
Achieving high accuracy with end-to-end speech recognizers requires careful parameter initialization prior to training.
no code implementations • 6 Nov 2017 • Suyoun Kim, Michael L. Seltzer
Building speech recognizers in multiple languages typically involves replicating a monolingual training recipe for each language, or utilizing a multi-task learning approach where models for different languages have separate output labels but share some internal parameters.
no code implementations • 17 Aug 2017 • Jinyu Li, Michael L. Seltzer, Xi Wang, Rui Zhao, Yifan Gong
High accuracy speech recognition requires a large amount of transcribed data for supervised training.