no code implementations • 9 Dec 2024 • Nan Rosemary Ke, Danny P. Sawyer, Hubert Soyer, Martin Engelcke, David P Reichert, Drew A. Hudson, John Reid, Alexander Lerchner, Danilo Jimenez Rezende, Timothy P Lillicrap, Michael Mozer, Jane X Wang
While problem solving is a standard evaluation task for foundation models, a crucial component of problem solving -- actively and strategically gathering information to test hypotheses -- has not been closely investigated.
no code implementations • 2 Oct 2024 • Michael A. Lepori, Michael Mozer, Asma Ghandeharioun
", integrates information from "bank"), and claims that contextualization errors are a result of violating these dependencies.
1 code implementation • 30 Jul 2024 • Vedant Shah, Dingli Yu, Kaifeng Lyu, Simon Park, Jiatong Yu, Yinghui He, Nan Rosemary Ke, Michael Mozer, Yoshua Bengio, Sanjeev Arora, Anirudh Goyal
We present a design framework that combines the strengths of LLMs with a human-in-the-loop approach to generate a diverse array of challenging math questions.
no code implementations • 20 May 2024 • Aniket Didolkar, Anirudh Goyal, Nan Rosemary Ke, Siyuan Guo, Michal Valko, Timothy Lillicrap, Danilo Rezende, Yoshua Bengio, Michael Mozer, Sanjeev Arora
(b) When using an LLM to solve the test questions, we present it with the full list of skill labels and ask it to identify the skill needed.
no code implementations • 3 Jan 2024 • Haonan Wang, James Zou, Michael Mozer, Anirudh Goyal, Alex Lamb, Linjun Zhang, Weijie J Su, Zhun Deng, Michael Qizhe Xie, Hannah Brown, Kenji Kawaguchi
With the rise of advanced generative AI models capable of tasks once reserved for human creativity, the study of AI's creative potential becomes imperative for its responsible development and application.
no code implementations • 26 Nov 2023 • Vedant Shah, Frederik Träuble, Ashish Malik, Hugo Larochelle, Michael Mozer, Sanjeev Arora, Yoshua Bengio, Anirudh Goyal
Machine \emph{unlearning}, which involves erasing knowledge about a \emph{forget set} from a trained model, can prove to be costly and infeasible by existing techniques.
no code implementations • 27 Jan 2023 • Sumukh Aithal, Anirudh Goyal, Alex Lamb, Yoshua Bengio, Michael Mozer
We evaluate these two approaches on three different SSL methods -- BYOL, SimSiam, and SwAV -- using ImageNette (10 class subset of ImageNet), ImageNet-100 and ImageNet-1k datasets.
2 code implementations • 4 Oct 2022 • Dianbo Liu, Vedant Shah, Oussama Boussif, Cristian Meo, Anirudh Goyal, Tianmin Shu, Michael Mozer, Nicolas Heess, Yoshua Bengio
We formalize the notions of coordination level and heterogeneity level of an environment and present HECOGrid, a suite of multi-agent RL environments that facilitates empirical evaluation of different MARL approaches across different levels of coordination and environmental heterogeneity by providing a quantitative control over coordination and heterogeneity levels of the environment.
Multi-agent Reinforcement Learning
reinforcement-learning
+1
1 code implementation • 22 Jul 2022 • Frederik Träuble, Anirudh Goyal, Nasim Rahaman, Michael Mozer, Kenji Kawaguchi, Yoshua Bengio, Bernhard Schölkopf
Deep neural networks perform well on classification tasks where data streams are i. i. d.
no code implementations • 21 May 2022 • Dianbo Liu, Vedant Shah, Oussama Boussif, Cristian Meo, Anirudh Goyal, Tianmin Shu, Michael Mozer, Nicolas Heess, Yoshua Bengio
In Multi-Agent Reinforcement Learning (MARL), specialized channels are often introduced that allow agents to communicate directly with one another.
Intelligent Communication
Multi-agent Reinforcement Learning
+2
no code implementations • 11 Apr 2022 • Nan Rosemary Ke, Silvia Chiappa, Jane Wang, Anirudh Goyal, Jorg Bornschein, Melanie Rey, Theophane Weber, Matthew Botvinic, Michael Mozer, Danilo Jimenez Rezende
The fundamental challenge in causal induction is to infer the underlying graph structure given observational and/or interventional data.
1 code implementation • 2 Jul 2021 • Nan Rosemary Ke, Aniket Didolkar, Sarthak Mittal, Anirudh Goyal, Guillaume Lajoie, Stefan Bauer, Danilo Rezende, Yoshua Bengio, Michael Mozer, Christopher Pal
A central goal for AI and causality is thus the joint discovery of abstract representations and causal structure.
no code implementations • NeurIPS 2021 • Anirudh Goyal, Aniket Didolkar, Nan Rosemary Ke, Charles Blundell, Philippe Beaudoin, Nicolas Heess, Michael Mozer, Yoshua Bengio
First, GNNs do not predispose interactions to be sparse, as relationships among independent entities are likely to be.
1 code implementation • ICLR 2022 • Anirudh Goyal, Aniket Didolkar, Alex Lamb, Kartikeya Badola, Nan Rosemary Ke, Nasim Rahaman, Jonathan Binas, Charles Blundell, Michael Mozer, Yoshua Bengio
We explore the use of such a communication channel in the context of deep learning for modeling the structure of complex environments.
no code implementations • 15 Oct 2020 • Alex Lamb, Anirudh Goyal, Agnieszka Słowik, Michael Mozer, Philippe Beaudoin, Yoshua Bengio
Feed-forward neural networks consist of a sequence of layers, in which each layer performs some processing on the information from the previous layer.
1 code implementation • ICML 2020 • Sarthak Mittal, Alex Lamb, Anirudh Goyal, Vikram Voleti, Murray Shanahan, Guillaume Lajoie, Michael Mozer, Yoshua Bengio
To effectively utilize the wealth of potential top-down information available, and to prevent the cacophony of intermixed signals in a bidirectional architecture, mechanisms are needed to restrict information flow.
no code implementations • 29 Jun 2020 • Anirudh Goyal, Alex Lamb, Phanideep Gampa, Philippe Beaudoin, Sergey Levine, Charles Blundell, Yoshua Bengio, Michael Mozer
To use a video game as an illustration, two enemies of the same type will share schemata but will have separate object files to encode their distinct state (e. g., health, position).