no code implementations • ICML 2020 • Abbas Abdolmaleki, Sandy Huang, Leonard Hasenclever, Michael Neunert, Martina Zambelli, Murilo Martins, Francis Song, Nicolas Heess, Raia Hadsell, Martin Riedmiller
Many real-world problems require trading off multiple competing objectives.
no code implementations • 8 Feb 2024 • Mohak Bhardwaj, Thomas Lampe, Michael Neunert, Francesco Romano, Abbas Abdolmaleki, Arunkumar Byravan, Markus Wulfmeier, Martin Riedmiller, Jonas Buchli
Recent advances in real-world applications of reinforcement learning (RL) have relied on the ability to accurately simulate systems at scale.
no code implementations • 21 Jul 2023 • Brendan D. Tracey, Andrea Michi, Yuri Chervonyi, Ian Davies, Cosmin Paduraru, Nevena Lazic, Federico Felici, Timo Ewalds, Craig Donner, Cristian Galperti, Jonas Buchli, Michael Neunert, Andrea Huber, Jonathan Evens, Paula Kurylowicz, Daniel J. Mankowitz, Martin Riedmiller, The TCV Team
Reinforcement learning (RL) has shown promising results for real-time control systems, including the domain of plasma magnetic control.
no code implementations • 24 May 2023 • Ken Caluwaerts, Atil Iscen, J. Chase Kew, Wenhao Yu, Tingnan Zhang, Daniel Freeman, Kuang-Huei Lee, Lisa Lee, Stefano Saliceti, Vincent Zhuang, Nathan Batchelor, Steven Bohez, Federico Casarini, Jose Enrique Chen, Omar Cortes, Erwin Coumans, Adil Dostmohamed, Gabriel Dulac-Arnold, Alejandro Escontrela, Erik Frey, Roland Hafner, Deepali Jain, Bauyrjan Jyenis, Yuheng Kuang, Edward Lee, Linda Luu, Ofir Nachum, Ken Oslund, Jason Powell, Diego Reyes, Francesco Romano, Feresteh Sadeghi, Ron Sloat, Baruch Tabanpour, Daniel Zheng, Michael Neunert, Raia Hadsell, Nicolas Heess, Francesco Nori, Jeff Seto, Carolina Parada, Vikas Sindhwani, Vincent Vanhoucke, Jie Tan
In the second approach, we distill the specialist skills into a Transformer-based generalist locomotion policy, named Locomotion-Transformer, that can handle various terrains and adjust the robot's gait based on the perceived environment and robot states.
no code implementations • 24 Nov 2022 • Giulia Vezzani, Dhruva Tirumala, Markus Wulfmeier, Dushyant Rao, Abbas Abdolmaleki, Ben Moran, Tuomas Haarnoja, Jan Humplik, Roland Hafner, Michael Neunert, Claudio Fantacci, Tim Hertweck, Thomas Lampe, Fereshteh Sadeghi, Nicolas Heess, Martin Riedmiller
The ability to effectively reuse prior knowledge is a key requirement when building general and flexible Reinforcement Learning (RL) agents.
no code implementations • 31 Mar 2022 • Steven Bohez, Saran Tunyasuvunakool, Philemon Brakel, Fereshteh Sadeghi, Leonard Hasenclever, Yuval Tassa, Emilio Parisotto, Jan Humplik, Tuomas Haarnoja, Roland Hafner, Markus Wulfmeier, Michael Neunert, Ben Moran, Noah Siegel, Andrea Huber, Francesco Romano, Nathan Batchelor, Federico Casarini, Josh Merel, Raia Hadsell, Nicolas Heess
We investigate the use of prior knowledge of human and animal movement to learn reusable locomotion skills for real legged robots.
1 code implementation • 12 Oct 2021 • Alex X. Lee, Coline Devin, Yuxiang Zhou, Thomas Lampe, Konstantinos Bousmalis, Jost Tobias Springenberg, Arunkumar Byravan, Abbas Abdolmaleki, Nimrod Gileadi, David Khosid, Claudio Fantacci, Jose Enrique Chen, Akhil Raju, Rae Jeong, Michael Neunert, Antoine Laurens, Stefano Saliceti, Federico Casarini, Martin Riedmiller, Raia Hadsell, Francesco Nori
We study the problem of robotic stacking with objects of complex geometry.
Ranked #2 on Skill Generalization on RGB-Stacking
no code implementations • 6 Aug 2020 • Roland Hafner, Tim Hertweck, Philipp Klöppner, Michael Bloesch, Michael Neunert, Markus Wulfmeier, Saran Tunyasuvunakool, Nicolas Heess, Martin Riedmiller
Modern Reinforcement Learning (RL) algorithms promise to solve difficult motor control problems directly from raw sensory inputs.
no code implementations • 30 Jul 2020 • Markus Wulfmeier, Dushyant Rao, Roland Hafner, Thomas Lampe, Abbas Abdolmaleki, Tim Hertweck, Michael Neunert, Dhruva Tirumala, Noah Siegel, Nicolas Heess, Martin Riedmiller
We introduce Hindsight Off-policy Options (HO2), a data-efficient option learning algorithm.
1 code implementation • 15 May 2020 • Abbas Abdolmaleki, Sandy H. Huang, Leonard Hasenclever, Michael Neunert, H. Francis Song, Martina Zambelli, Murilo F. Martins, Nicolas Heess, Raia Hadsell, Martin Riedmiller
Many real-world problems require trading off multiple competing objectives.
no code implementations • ICLR 2020 • Noah Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert, Thomas Lampe, Roland Hafner, Nicolas Heess, Martin Riedmiller
In practice, however, standard off-policy algorithms fail in the batch setting for continuous control.
no code implementations • 19 Feb 2020 • Noah Y. Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert, Thomas Lampe, Roland Hafner, Nicolas Heess, Martin Riedmiller
In practice, however, standard off-policy algorithms fail in the batch setting for continuous control.
no code implementations • 2 Jan 2020 • Michael Neunert, Abbas Abdolmaleki, Markus Wulfmeier, Thomas Lampe, Jost Tobias Springenberg, Roland Hafner, Francesco Romano, Jonas Buchli, Nicolas Heess, Martin Riedmiller
In contrast, we propose to treat hybrid problems in their 'native' form by solving them with hybrid reinforcement learning, which optimizes for discrete and continuous actions simultaneously.
no code implementations • 9 Oct 2019 • Arunkumar Byravan, Jost Tobias Springenberg, Abbas Abdolmaleki, Roland Hafner, Michael Neunert, Thomas Lampe, Noah Siegel, Nicolas Heess, Martin Riedmiller
Humans are masters at quickly learning many complex tasks, relying on an approximate understanding of the dynamics of their environments.
Model-based Reinforcement Learning Reinforcement Learning +3
no code implementations • 26 Jun 2019 • Markus Wulfmeier, Abbas Abdolmaleki, Roland Hafner, Jost Tobias Springenberg, Michael Neunert, Tim Hertweck, Thomas Lampe, Noah Siegel, Nicolas Heess, Martin Riedmiller
The successful application of general reinforcement learning algorithms to real-world robotics applications is often limited by their high data requirements.
General Reinforcement Learning Hierarchical Reinforcement Learning +5
no code implementations • 13 Feb 2019 • Devin Schwab, Tobias Springenberg, Murilo F. Martins, Thomas Lampe, Michael Neunert, Abbas Abdolmaleki, Tim Hertweck, Roland Hafner, Francesco Nori, Martin Riedmiller
We present a method for fast training of vision based control policies on real robots.
no code implementations • 27 Sep 2018 • Steven Bohez, Abbas Abdolmaleki, Michael Neunert, Jonas Buchli, Nicolas Heess, Raia Hadsell
We demonstrate the efficiency of our approach using a number of continuous control benchmark tasks as well as a realistic, energy-optimized quadruped locomotion task.
2 code implementations • ICML 2018 • Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Van de Wiele, Volodymyr Mnih, Nicolas Heess, Jost Tobias Springenberg
We propose Scheduled Auxiliary Control (SAC-X), a new learning paradigm in the context of Reinforcement Learning (RL).
2 code implementations • 12 Jan 2018 • Markus Giftthaler, Michael Neunert, Markus Stäuble, Jonas Buchli
The CT was designed to solve large-scale optimal control and estimation problems efficiently and allows for online control of dynamic systems.
Robotics Optimization and Control
no code implementations • 7 Dec 2017 • Michael Neunert, Markus Stäuble, Markus Giftthaler, Carmine D. Bellicoso, Jan Carius, Christian Gehring, Marco Hutter, Jonas Buchli
In this work we present a whole-body Nonlinear Model Predictive Control approach for Rigid Body Systems subject to contacts.
Robotics
2 code implementations • 29 Nov 2017 • Markus Giftthaler, Michael Neunert, Markus Stäuble, Jonas Buchli, Moritz Diehl
This paper introduces a family of iterative algorithms for unconstrained nonlinear optimal control.
Systems and Control Robotics Optimization and Control
no code implementations • 12 Sep 2017 • Markus Giftthaler, Michael Neunert, Markus Stäuble, Marco Frigerio, Claudio Semini, Jonas Buchli
First, we show a Trajectory Optimization example for the quadrupedal robot HyQ, which employs auto-differentiation on the dynamics including a contact model.
Robotics