no code implementations • 8 Aug 2024 • Saurabh Farkya, Zachary Alan Daniels, Aswin Raghavan, Gooitzen van der Wal, Michael Isnardi, Michael Piacentino, David Zhang
We study a data-driven system that combines dynamic sensing at the pixel level with computer vision analytics at the video level and propose a feedback control loop to minimize data movement between the sensor front-end and computational back-end without compromising detection and tracking precision.
no code implementations • 3 Aug 2023 • Zachary A. Daniels, Jun Hu, Michael Lomnitz, Phil Miller, Aswin Raghavan, Joe Zhang, Michael Piacentino, David Zhang
This paper presents the Encoder-Adaptor-Reconfigurator (EAR) framework for efficient continual learning under domain shifts.
no code implementations • 8 Dec 2022 • Indranil Sur, Zachary Daniels, Abrar Rahman, Kamil Faber, Gianmarco J. Gallardo, Tyler L. Hayes, Cameron E. Taylor, Mustafa Burak Gurbuz, James Smith, Sahana Joshi, Nathalie Japkowicz, Michael Baron, Zsolt Kira, Christopher Kanan, Roberto Corizzo, Ajay Divakaran, Michael Piacentino, Jesse Hostetler, Aswin Raghavan
In this paper, we introduce the Lifelong Reinforcement Learning Components Framework (L2RLCF), which standardizes L2RL systems and assimilates different continual learning components (each addressing different aspects of the lifelong learning problem) into a unified system.
no code implementations • 17 Aug 2022 • Michael Lomnitz, Zachary Daniels, David Zhang, Michael Piacentino
To enable learning on edge devices with fast convergence and low memory, we present a novel backpropagation-free optimization algorithm dubbed Target Projection Stochastic Gradient Descent (tpSGD).
no code implementations • 9 Aug 2022 • Zachary Daniels, Aswin Raghavan, Jesse Hostetler, Abrar Rahman, Indranil Sur, Michael Piacentino, Ajay Divakaran
We present a version of GR for LRL that satisfies two desiderata: (a) Introspective density modelling of the latent representations of policies learned using deep RL, and (b) Model-free end-to-end learning.
no code implementations • 10 Jun 2022 • Indhumathi Kandaswamy, Saurabh Farkya, Zachary Daniels, Gooitzen van der Wal, Aswin Raghavan, Yuzheng Zhang, Jun Hu, Michael Lomnitz, Michael Isnardi, David Zhang, Michael Piacentino
In this paper we present Hyper-Dimensional Reconfigurable Analytics at the Tactical Edge (HyDRATE) using low-SWaP embedded hardware that can perform real-time reconfiguration at the edge leveraging non-MAC (free of floating-point MultiplyACcumulate operations) deep neural nets (DNN) combined with hyperdimensional (HD) computing accelerators.
no code implementations • 10 Jun 2022 • Saurabh Farkya, Zachary Daniels, Aswin Nadamuni Raghavan, David Zhang, Michael Piacentino
We examine how the saccade mechanism from biological vision can be used to make deep neural networks more efficient for classification and object detection problems.