no code implementations • 23 Mar 2022 • Steven Hicks, Andrea Storås, Michael Riegler, Cise Midoglu, Malek Hammou, Thomas de Lange, Sravanthi Parasa, Pål Halvorsen, Inga Strümke
Deep learning has in recent years achieved immense success in all areas of computer vision and has the potential of assisting medical doctors in analyzing visual content for disease and other abnormalities.
no code implementations • 3 Mar 2022 • Thu Nguyen, Thanh Nhan Phan, Van Nhuong Nguyen, Thanh Binh Nguyen, Pål Halvorsen, Michael Riegler
The experiments show that our method can produce a small set of features in a fraction of the amount of time by the other methods under comparison.
1 code implementation • Nordic Machine Intelligence 2021 • Steven Hicks, Debesh Jha, Vajira Thambawita, Pål Halvorsen, Bjørn-Jostein Singstad, Sachin Gaur, Klas Pettersen, Morten Goodwin, Sravanthi Parasa, Thomas de Lange, Michael Riegler
MedAI: Transparency in Medical Image Segmentation is a challenge held for the first time at the Nordic AI Meet that focuses on medical image segmentation and transparency in machine learning (ML)-based systems.
1 code implementation • 12 Apr 2021 • Annika Reinke, Minu D. Tizabi, Carole H. Sudre, Matthias Eisenmann, Tim Rädsch, Michael Baumgartner, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Peter Bankhead, Arriel Benis, M. Jorge Cardoso, Veronika Cheplygina, Evangelia Christodoulou, Beth Cimini, Gary S. Collins, Keyvan Farahani, Bram van Ginneken, Ben Glocker, Patrick Godau, Fred Hamprecht, Daniel A. Hashimoto, Doreen Heckmann-Nötzel, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Alexandros Karargyris, Alan Karthikesalingam, Bernhard Kainz, Emre Kavur, Hannes Kenngott, Jens Kleesiek, Thijs Kooi, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, David Moher, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, M. Alican Noyan, Jens Petersen, Gorkem Polat, Nasir Rajpoot, Mauricio Reyes, Nicola Rieke, Michael Riegler, Hassan Rivaz, Julio Saez-Rodriguez, Clarisa Sanchez Gutierrez, Julien Schroeter, Anindo Saha, Shravya Shetty, Maarten van Smeden, Bram Stieltjes, Ronald M. Summers, Abdel A. Taha, Sotirios A. Tsaftaris, Ben van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Annette Kopp-Schneider, Paul Jäger, Lena Maier-Hein
While the importance of automatic image analysis is continuously increasing, recent meta-research revealed major flaws with respect to algorithm validation.
no code implementations • 20 Nov 2020 • Konstantinos Kousias, Apostolos Pappas, Ozgu Alay, Antonios Argyriou, Michael Riegler
Bandwidth forecasting in Mobile Broadband (MBB) networks is a challenging task, particularly when coupled with a degree of mobility.
no code implementations • 4 Sep 2020 • Syed Zohaib Hassan, Kashif Ahmad, Steven Hicks, Paal Halvorsen, Ala Al-Fuqaha, Nicola Conci, Michael Riegler
While sentiment analysis of text streams has been widely explored in literature, sentiment analysis from images and videos is relatively new.
no code implementations • 8 Nov 2019 • Vajira Thambawita, Pål Halvorsen, Hugo Hammer, Michael Riegler, Trine B. Haugen
To solve this regression task of predicting motility and morphology, stacked dense optical flows and extracted original frames from sperm videos were used with the modified state of the art convolution neural networks.
1 code implementation • 8 Nov 2019 • Vajira Thambawita, Pål Halvorsen, Hugo Hammer, Michael Riegler, Trine B. Haugen
In this paper, we present a two-step deep learning method that is used to predict sperm motility and morphology-based on video recordings of human spermatozoa.
no code implementations • 7 Oct 2019 • Kashif Ahmad, Konstantin Pogorelov, Mohib Ullah, Michael Riegler, Nicola Conci, Johannes Langguth, Ala Al-Fuqaha
In this paper we present our methods for the MediaEval 2019 Mul-timedia Satellite Task, which is aiming to extract complementaryinformation associated with adverse events from Social Media andsatellites.
no code implementations • 31 Oct 2018 • Vajira Thambawita, Debesh Jha, Michael Riegler, Pål Halvorsen, Hugo Lewi Hammer, Håvard D. Johansen, Dag Johansen
In this paper, we present our approach for the 2018 Medico Task classifying diseases in the gastrointestinal tract.
no code implementations • 15 Sep 2017 • Francesca Murabito, Concetto Spampinato, Simone Palazzo, Konstantin Pogorelov, Michael Riegler
This paper presents an approach for top-down saliency detection guided by visual classification tasks.