1 code implementation • 16 Aug 2024 • Simon Deltadahl, Julian Gilbey, Christine Van Laer, Nancy Boeckx, Mathie Leers, Tanya Freeman, Laura Aiken, Timothy Farren, Matthew Smith, Mohamad Zeina, BloodCounts! Consortium, Concetta Piazzese, Joseph Taylor, Nicholas Gleadall, Carola-Bibiane Schönlieb, Suthesh Sivapalaratnam, Michael Roberts, Parashkev Nachev
Accurate classification of haematological cells is critical for diagnosing blood disorders, but presents significant challenges for machine automation owing to the complexity of cell morphology, heterogeneities of biological, pathological, and imaging characteristics, and the imbalance of cell type frequencies.
1 code implementation • 29 May 2024 • Anna Breger, Clemens Karner, Ian Selby, Janek Gröhl, Sören Dittmer, Edward Lilley, Judith Babar, Jake Beckford, Thomas R Else, Timothy J Sadler, Shahab Shahipasand, Arthikkaa Thavakumar, Michael Roberts, Carola-Bibiane Schönlieb
Image quality assessment (IQA) is standard practice in the development stage of novel machine learning algorithms that operate on images.
no code implementations • 29 May 2024 • Anna Breger, Ander Biguri, Malena Sabaté Landman, Ian Selby, Nicole Amberg, Elisabeth Brunner, Janek Gröhl, Sepideh Hatamikia, Clemens Karner, Lipeng Ning, Sören Dittmer, Michael Roberts, AIX-COVNET Collaboration, Carola-Bibiane Schönlieb
Image quality assessment (IQA) is not just indispensable in clinical practice to ensure high standards, but also in the development stage of novel algorithms that operate on medical images with reference data.
1 code implementation • 29 May 2024 • Fan Zhang, Carlos Esteve-Yagüe, Sören Dittmer, Carola-Bibiane Schönlieb, Michael Roberts
This study contributes to PFL by establishing a solid theoretical foundation for the proposed method and offering a robust, ready-to-use framework that effectively addresses the challenges posed by non-IID data in FL.
1 code implementation • 19 Dec 2023 • Michael Roberts, Alon Hazan, Sören Dittmer, James H. F. Rudd, Carola-Bibiane Schönlieb
Whilst the size and complexity of ML models have rapidly and significantly increased over the past decade, the methods for assessing their performance have not kept pace.
no code implementations • 4 Oct 2023 • Fan Zhang, Daniel Kreuter, Yichen Chen, Sören Dittmer, Samuel Tull, Tolou Shadbahr, BloodCounts! Collaboration, Jacobus Preller, James H. F. Rudd, John A. D. Aston, Carola-Bibiane Schönlieb, Nicholas Gleadall, Michael Roberts
We give detailed recommendations to help improve the quality of the methodology development for federated learning in healthcare.
no code implementations • 15 Aug 2023 • Sayash Kapoor, Emily Cantrell, Kenny Peng, Thanh Hien Pham, Christopher A. Bail, Odd Erik Gundersen, Jake M. Hofman, Jessica Hullman, Michael A. Lones, Momin M. Malik, Priyanka Nanayakkara, Russell A. Poldrack, Inioluwa Deborah Raji, Michael Roberts, Matthew J. Salganik, Marta Serra-Garcia, Brandon M. Stewart, Gilles Vandewiele, Arvind Narayanan
Machine learning (ML) methods are proliferating in scientific research.
1 code implementation • 25 Jul 2023 • Sören Dittmer, Michael Roberts, Jacobus Preller, AIX COVNET, James H. F. Rudd, John A. D. Aston, Carola-Bibiane Schönlieb
We aim to provide the tools needed to fully harness the potential of survival analysis in deep learning.
1 code implementation • 15 Jun 2023 • Daniel Kreuter, Samuel Tull, Julian Gilbey, Jacobus Preller, BloodCounts! Consortium, John A. D. Aston, James H. F. Rudd, Suthesh Sivapalaratnam, Carola-Bibiane Schönlieb, Nicholas Gleadall, Michael Roberts
Clinical data is often affected by clinically irrelevant factors such as discrepancies between measurement devices or differing processing methods between sites.
no code implementations • 18 Nov 2022 • Michael Roberts, J. Ignacio Deza, Hisham Ihshaish, Yanhui Zhu
We show that this approach can be both accurate as well as uniquely useful in the business-to-business context, with which the scholarly publishing business model shares similarities.
no code implementations • 21 Oct 2022 • Sören Dittmer, Michael Roberts, Julian Gilbey, Ander Biguri, AIX-COVNET Collaboration, Jacobus Preller, James H. F. Rudd, John A. D. Aston, Carola-Bibiane Schönlieb
In this perspective, we argue that despite the democratization of powerful tools for data science and machine learning over the last decade, developing the code for a trustworthy and effective data science system (DSS) is getting harder.
no code implementations • 16 Jun 2022 • Tolou Shadbahr, Michael Roberts, Jan Stanczuk, Julian Gilbey, Philip Teare, Sören Dittmer, Matthew Thorpe, Ramon Vinas Torne, Evis Sala, Pietro Lio, Mishal Patel, AIX-COVNET Collaboration, James H. F. Rudd, Tuomas Mirtti, Antti Rannikko, John A. D. Aston, Jing Tang, Carola-Bibiane Schönlieb
Classifying samples in incomplete datasets is a common aim for machine learning practitioners, but is non-trivial.
no code implementations • 17 Jan 2022 • Yang Nan, Javier Del Ser, Simon Walsh, Carola Schönlieb, Michael Roberts, Ian Selby, Kit Howard, John Owen, Jon Neville, Julien Guiot, Benoit Ernst, Ana Pastor, Angel Alberich-Bayarri, Marion I. Menzel, Sean Walsh, Wim Vos, Nina Flerin, Jean-Paul Charbonnier, Eva van Rikxoort, Avishek Chatterjee, Henry Woodruff, Philippe Lambin, Leonor Cerdá-Alberich, Luis Martí-Bonmatí, Francisco Herrera, Guang Yang
Removing the bias and variance of multicentre data has always been a challenge in large scale digital healthcare studies, which requires the ability to integrate clinical features extracted from data acquired by different scanners and protocols to improve stability and robustness.
1 code implementation • 18 Nov 2021 • Xiang Bai, Hanchen Wang, Liya Ma, Yongchao Xu, Jiefeng Gan, Ziwei Fan, Fan Yang, Ke Ma, Jiehua Yang, Song Bai, Chang Shu, Xinyu Zou, Renhao Huang, Changzheng Zhang, Xiaowu Liu, Dandan Tu, Chuou Xu, Wenqing Zhang, Xi Wang, Anguo Chen, Yu Zeng, Dehua Yang, Ming-Wei Wang, Nagaraj Holalkere, Neil J. Halin, Ihab R. Kamel, Jia Wu, Xuehua Peng, Xiang Wang, Jianbo Shao, Pattanasak Mongkolwat, Jianjun Zhang, Weiyang Liu, Michael Roberts, Zhongzhao Teng, Lucian Beer, Lorena Escudero Sanchez, Evis Sala, Daniel Rubin, Adrian Weller, Joan Lasenby, Chuangsheng Zheng, Jianming Wang, Zhen Li, Carola-Bibiane Schönlieb, Tian Xia
Artificial intelligence (AI) provides a promising substitution for streamlining COVID-19 diagnoses.
no code implementations • 14 Aug 2020 • Michael Roberts, Derek Driggs, Matthew Thorpe, Julian Gilbey, Michael Yeung, Stephan Ursprung, Angelica I. Aviles-Rivero, Christian Etmann, Cathal McCague, Lucian Beer, Jonathan R. Weir-McCall, Zhongzhao Teng, Effrossyni Gkrania-Klotsas, James H. F. Rudd, Evis Sala, Carola-Bibiane Schönlieb
Machine learning methods offer great promise for fast and accurate detection and prognostication of COVID-19 from standard-of-care chest radiographs (CXR) and computed tomography (CT) images.
no code implementations • 19 Apr 2020 • Michael Roberts, Indranil SenGupta
In this paper we present a sequential hypothesis test for the detection of general jump size distrubution.
no code implementations • 21 Nov 2018 • Michael Roberts, Jack Spencer
Selective segmentation involves incorporating user input to partition an image into foreground and background, by discriminating between objects of a similar type.