Search Results for author: Michael W. Dusenberry

Found 10 papers, 6 papers with code

Morse Neural Networks for Uncertainty Quantification

no code implementations2 Jul 2023 Benoit Dherin, Huiyi Hu, Jie Ren, Michael W. Dusenberry, Balaji Lakshminarayanan

We introduce a new deep generative model useful for uncertainty quantification: the Morse neural network, which generalizes the unnormalized Gaussian densities to have modes of high-dimensional submanifolds instead of just discrete points.

Anomaly Detection One-class classifier

Neural Spline Search for Quantile Probabilistic Modeling

no code implementations12 Jan 2023 Ruoxi Sun, Chun-Liang Li, Sercan O. Arik, Michael W. Dusenberry, Chen-Yu Lee, Tomas Pfister

Accurate estimation of output quantiles is crucial in many use cases, where it is desired to model the range of possibility.

regression Time Series +1

Combining Ensembles and Data Augmentation can Harm your Calibration

no code implementations ICLR 2021 Yeming Wen, Ghassen Jerfel, Rafael Muller, Michael W. Dusenberry, Jasper Snoek, Balaji Lakshminarayanan, Dustin Tran

Ensemble methods which average over multiple neural network predictions are a simple approach to improve a model's calibration and robustness.

Data Augmentation

Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors

1 code implementation ICML 2020 Michael W. Dusenberry, Ghassen Jerfel, Yeming Wen, Yi-An Ma, Jasper Snoek, Katherine Heller, Balaji Lakshminarayanan, Dustin Tran

Bayesian neural networks (BNNs) demonstrate promising success in improving the robustness and uncertainty quantification of modern deep learning.

Learning the Graphical Structure of Electronic Health Records with Graph Convolutional Transformer

2 code implementations11 Jun 2019 Edward Choi, Zhen Xu, Yujia Li, Michael W. Dusenberry, Gerardo Flores, Yuan Xue, Andrew M. Dai

A recent study showed that using the graphical structure underlying EHR data (e. g. relationship between diagnoses and treatments) improves the performance of prediction tasks such as heart failure prediction.

Graph Reconstruction Readmission Prediction +1

Analyzing the Role of Model Uncertainty for Electronic Health Records

1 code implementation10 Jun 2019 Michael W. Dusenberry, Dustin Tran, Edward Choi, Jonas Kemp, Jeremy Nixon, Ghassen Jerfel, Katherine Heller, Andrew M. Dai

We further show that RNNs with only Bayesian embeddings can be a more efficient way to capture model uncertainty compared to ensembles, and we analyze how model uncertainty is impacted across individual input features and patient subgroups.

Cannot find the paper you are looking for? You can Submit a new open access paper.