1 code implementation • 9 Dec 2024 • Michael Wornow, Suhana Bedi, Miguel Angel Fuentes Hernandez, Ethan Steinberg, Jason Alan Fries, Christopher Re, Sanmi Koyejo, Nigam H. Shah
We find that longer context models improve predictive performance -- our Mamba-based model surpasses the prior state-of-the-art on 9/14 tasks on the EHRSHOT prediction benchmark.
1 code implementation • 12 Sep 2024 • Ethan Steinberg, Michael Wornow, Suhana Bedi, Jason Alan Fries, Matthew B. A. McDermott, Nigam H. Shah
The growing demand for machine learning in healthcare requires processing increasingly large electronic health record (EHR) datasets, but existing pipelines are not computationally efficient or scalable.
1 code implementation • 19 Jun 2024 • Michael Wornow, Avanika Narayan, Ben Viggiano, Ishan S. Khare, Tathagat Verma, Tibor Thompson, Miguel Angel Fuentes Hernandez, Sudharsan Sundar, Chloe Trujillo, Krrish Chawla, Rongfei Lu, Justin Shen, Divya Nagaraj, Joshua Martinez, Vardhan Agrawal, Althea Hudson, Nigam H. Shah, Christopher Re
To address this gap we present WONDERBREAD, the first benchmark for evaluating multimodal FMs on BPM tasks beyond automation.
1 code implementation • 3 May 2024 • Michael Wornow, Avanika Narayan, Krista Opsahl-Ong, Quinn McIntyre, Nigam H. Shah, Christopher Re
We conduct initial experiments showing that multimodal FMs can address the limitations of traditional RPA with (1) near-human-level understanding of workflows (93% accuracy on a workflow understanding task) and (2) instant set-up with minimal technical barrier (based solely on a natural language description of a workflow, ECLAIR achieves end-to-end completion rates of 40%).
no code implementations • 3 Mar 2024 • Hyewon Jeong, Sarah Jabbour, Yuzhe Yang, Rahul Thapta, Hussein Mozannar, William Jongwon Han, Nikita Mehandru, Michael Wornow, Vladislav Lialin, Xin Liu, Alejandro Lozano, Jiacheng Zhu, Rafal Dariusz Kocielnik, Keith Harrigian, Haoran Zhang, Edward Lee, Milos Vukadinovic, Aparna Balagopalan, Vincent Jeanselme, Katherine Matton, Ilker Demirel, Jason Fries, Parisa Rashidi, Brett Beaulieu-Jones, Xuhai Orson Xu, Matthew McDermott, Tristan Naumann, Monica Agrawal, Marinka Zitnik, Berk Ustun, Edward Choi, Kristen Yeom, Gamze Gursoy, Marzyeh Ghassemi, Emma Pierson, George Chen, Sanjat Kanjilal, Michael Oberst, Linying Zhang, Harvineet Singh, Tom Hartvigsen, Helen Zhou, Chinasa T. Okolo
The organization of the research roundtables at the conference involved 17 Senior Chairs and 19 Junior Chairs across 11 tables.
no code implementations • 27 Feb 2024 • Alison Callahan, Duncan McElfresh, Juan M. Banda, Gabrielle Bunney, Danton Char, Jonathan Chen, Conor K. Corbin, Debadutta Dash, Norman L. Downing, Sneha S. Jain, Nikesh Kotecha, Jonathan Masterson, Michelle M. Mello, Keith Morse, Srikar Nallan, Abby Pandya, Anurang Revri, Aditya Sharma, Christopher Sharp, Rahul Thapa, Michael Wornow, Alaa Youssef, Michael A. Pfeffer, Nigam H. Shah
Our novel contributions - usefulness estimates by simulation, financial projections to quantify sustainability, and a process to do ethical assessments - as well as their underlying methods and open source tools, are available for other healthcare systems to conduct actionable evaluations of candidate AI solutions.
1 code implementation • 5 Feb 2024 • Michael Wornow, Alejandro Lozano, Dev Dash, Jenelle Jindal, Kenneth W. Mahaffey, Nigam H. Shah
First, we design an LLM-based system which, given a patient's medical history as unstructured clinical text, evaluates whether that patient meets a set of inclusion criteria (also specified as free text).
2 code implementations • NeurIPS 2023 • Michael Wornow, Rahul Thapa, Ethan Steinberg, Jason A. Fries, Nigam H. Shah
The success of foundation models creates new challenges for healthcare ML by requiring access to shared pretrained models to validate performance benefits.
4 code implementations • NeurIPS 2023 • Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Callum Birch-Sykes, Michael Wornow, Aman Patel, Clayton Rabideau, Stefano Massaroli, Yoshua Bengio, Stefano Ermon, Stephen A. Baccus, Chris Ré
Leveraging Hyena's new long-range capabilities, we present HyenaDNA, a genomic foundation model pretrained on the human reference genome with context lengths of up to 1 million tokens at the single nucleotide-level - an up to 500x increase over previous dense attention-based models.
2 code implementations • 22 Mar 2023 • Michael Wornow, Yizhe Xu, Rahul Thapa, Birju Patel, Ethan Steinberg, Scott Fleming, Michael A. Pfeffer, Jason Fries, Nigam H. Shah
The successes of foundation models such as ChatGPT and AlphaFold have spurred significant interest in building similar models for electronic medical records (EMRs) to improve patient care and hospital operations.
no code implementations • ICLR 2021 • Sarah Hooper, Michael Wornow, Ying Hang Seah, Peter Kellman, Hui Xue, Frederic Sala, Curtis Langlotz, Christopher Re
We propose a framework that fuses limited label learning and weak supervision for segmentation tasks, enabling users to train high-performing segmentation CNNs with very few hand-labeled training points.