1 code implementation • 14 Sep 2021 • Adam Izdebski, Patrick J. Thoral, Robbert C. A. Lalisang, Dean M. McHugh, Diederik Gommers, Olaf L. Cremer, Rob J. Bosman, Sander Rigter, Evert-Jan Wils, Tim Frenzel, Dave A. Dongelmans, Remko de Jong, Marco A. A. Peters, Marlijn J. A Kamps, Dharmanand Ramnarain, Ralph Nowitzky, Fleur G. C. A. Nooteboom, Wouter de Ruijter, Louise C. Urlings-Strop, Ellen G. M. Smit, D. Jannet Mehagnoul-Schipper, Tom Dormans, Cornelis P. C. de Jager, Stefaan H. A. Hendriks, Sefanja Achterberg, Evelien Oostdijk, Auke C. Reidinga, Barbara Festen-Spanjer, Gert B. Brunnekreef, Alexander D. Cornet, Walter van den Tempel, Age D. Boelens, Peter Koetsier, Judith Lens, Harald J. Faber, A. Karakus, Robert Entjes, Paul de Jong, Thijs C. D. Rettig, Sesmu Arbous, Lucas M. Fleuren, Tariq A. Dam, Michele Tonutti, Daan P. de Bruin, Paul W. G. Elbers, Giovanni Cinà
Despite the recent progress in the field of causal inference, to date there is no agreed upon methodology to glean treatment effect estimation from observational data.
2 code implementations • 13 Apr 2020 • Lotta Meijerink, Giovanni Cinà, Michele Tonutti
In a data-scarce field such as healthcare, where models often deliver predictions on patients with rare conditions, the ability to measure the uncertainty of a model's prediction could potentially lead to improved effectiveness of decision support tools and increased user trust.
1 code implementation • 20 Jun 2019 • David Ruhe, Giovanni Cinà, Michele Tonutti, Daan de Bruin, Paul Elbers
In this work we show how Bayesian modelling and the predictive uncertainty that it provides can be used to mitigate risk of misguided prediction and to detect out-of-domain examples in a medical setting.
1 code implementation • 26 Feb 2019 • Michele Tonutti, Emanuele Ruffaldi, Alessandro Cattaneo, Carlo Alberto Avizzano
Through deep learning and computer vision techniques, driving manoeuvres can be predicted accurately a few seconds in advance.