Search Results for author: Miguel Rodrigues

Found 18 papers, 2 papers with code

On the Generalization Error of Meta Learning for the Gibbs Algorithm

no code implementations27 Apr 2023 Yuheng Bu, Harsha Vardhan Tetali, Gholamali Aminian, Miguel Rodrigues, Gregory Wornell

We analyze the generalization ability of joint-training meta learning algorithms via the Gibbs algorithm.

Meta-Learning

How Does Pseudo-Labeling Affect the Generalization Error of the Semi-Supervised Gibbs Algorithm?

no code implementations15 Oct 2022 Haiyun He, Gholamali Aminian, Yuheng Bu, Miguel Rodrigues, Vincent Y. F. Tan

Our findings offer new insights that the generalization performance of SSL with pseudo-labeling is affected not only by the information between the output hypothesis and input training data but also by the information {\em shared} between the {\em labeled} and {\em pseudo-labeled} data samples.

regression

Semi-Counterfactual Risk Minimization Via Neural Networks

no code implementations15 Sep 2022 Gholamali Aminian, Roberto Vega, Omar Rivasplata, Laura Toni, Miguel Rodrigues

Counterfactual risk minimization is a framework for offline policy optimization with logged data which consists of context, action, propensity score, and reward for each sample point.

Simple Regularisation for Uncertainty-Aware Knowledge Distillation

no code implementations19 May 2022 Martin Ferianc, Miguel Rodrigues

We demonstrate the generality of the approach on combinations of toy data, SVHN/CIFAR-10, simple to complex NN architectures and different tasks.

BIG-bench Machine Learning Knowledge Distillation

Tighter Expected Generalization Error Bounds via Convexity of Information Measures

no code implementations24 Feb 2022 Gholamali Aminian, Yuheng Bu, Gregory Wornell, Miguel Rodrigues

Due to the convexity of the information measures, the proposed bounds in terms of Wasserstein distance and total variation distance are shown to be tighter than their counterparts based on individual samples in the literature.

Minimax Demographic Group Fairness in Federated Learning

no code implementations20 Jan 2022 Afroditi Papadaki, Natalia Martinez, Martin Bertran, Guillermo Sapiro, Miguel Rodrigues

Federated learning is an increasingly popular paradigm that enables a large number of entities to collaboratively learn better models.

Fairness Federated Learning

An Exact Characterization of the Generalization Error for the Gibbs Algorithm

no code implementations NeurIPS 2021 Gholamali Aminian, Yuheng Bu, Laura Toni, Miguel Rodrigues, Gregory Wornell

Various approaches have been developed to upper bound the generalization error of a supervised learning algorithm.

Characterizing and Understanding the Generalization Error of Transfer Learning with Gibbs Algorithm

no code implementations2 Nov 2021 Yuheng Bu, Gholamali Aminian, Laura Toni, Miguel Rodrigues, Gregory Wornell

We provide an information-theoretic analysis of the generalization ability of Gibbs-based transfer learning algorithms by focusing on two popular transfer learning approaches, $\alpha$-weighted-ERM and two-stage-ERM.

Transfer Learning

Federating for Learning Group Fair Models

no code implementations5 Oct 2021 Afroditi Papadaki, Natalia Martinez, Martin Bertran, Guillermo Sapiro, Miguel Rodrigues

Federated learning is an increasingly popular paradigm that enables a large number of entities to collaboratively learn better models.

Fairness Federated Learning

Optimizing Bayesian Recurrent Neural Networks on an FPGA-based Accelerator

no code implementations4 Jun 2021 Martin Ferianc, Zhiqiang Que, Hongxiang Fan, Wayne Luk, Miguel Rodrigues

To further improve the overall algorithmic-hardware performance, a co-design framework is proposed to explore the most fitting algorithmic-hardware configurations for Bayesian RNNs.

Time Series Analysis

High-Performance FPGA-based Accelerator for Bayesian Neural Networks

no code implementations12 May 2021 Hongxiang Fan, Martin Ferianc, Miguel Rodrigues, HongYu Zhou, Xinyu Niu, Wayne Luk

Neural networks (NNs) have demonstrated their potential in a wide range of applications such as image recognition, decision making or recommendation systems.

Autonomous Vehicles Bayesian Inference +3

ComBiNet: Compact Convolutional Bayesian Neural Network for Image Segmentation

1 code implementation14 Apr 2021 Martin Ferianc, Divyansh Manocha, Hongxiang Fan, Miguel Rodrigues

Fully convolutional U-shaped neural networks have largely been the dominant approach for pixel-wise image segmentation.

Bayesian Inference Decision Making +2

On the Effects of Quantisation on Model Uncertainty in Bayesian Neural Networks

1 code implementation22 Feb 2021 Martin Ferianc, Partha Maji, Matthew Mattina, Miguel Rodrigues

Bayesian neural networks (BNNs) are making significant progress in many research areas where decision-making needs to be accompanied by uncertainty estimation.

Autonomous Driving Decision Making

VINNAS: Variational Inference-based Neural Network Architecture Search

no code implementations12 Jul 2020 Martin Ferianc, Hongxiang Fan, Miguel Rodrigues

In recent years, neural architecture search (NAS) has received intensive scientific and industrial interest due to its capability of finding a neural architecture with high accuracy for various artificial intelligence tasks such as image classification or object detection.

Image Classification Neural Architecture Search +3

Learning data-derived privacy preserving representations from information metrics

no code implementations ICLR 2019 Martin Bertran, Natalia Martinez, Afroditi Papadaki, Qiang Qiu, Miguel Rodrigues, Guillermo Sapiro

We study space-preserving transformations where the utility provider can use the same algorithm on original and sanitized data, a critical and novel attribute to help service providers accommodate varying privacy requirements with a single set of utility algorithms.

Face Recognition Privacy Preserving

Learning to Collaborate for User-Controlled Privacy

no code implementations18 May 2018 Martin Bertran, Natalia Martinez, Afroditi Papadaki, Qiang Qiu, Miguel Rodrigues, Guillermo Sapiro

As such, users and utility providers should collaborate in data privacy, a paradigm that has not yet been developed in the privacy research community.

Generalized Bregman Divergence and Gradient of Mutual Information for Vector Poisson Channels

no code implementations28 Jan 2013 Liming Wang, Miguel Rodrigues, Lawrence Carin

We investigate connections between information-theoretic and estimation-theoretic quantities in vector Poisson channel models.

Compressive Sensing Document Classification

Cannot find the paper you are looking for? You can Submit a new open access paper.