Search Results for author: Mikhail Belyaev

Found 33 papers, 16 papers with code

Anatomical Positional Embeddings

1 code implementation16 Sep 2024 Mikhail Goncharov, Valentin Samokhin, Eugenia Soboleva, Roman Sokolov, Boris Shirokikh, Mikhail Belyaev, Anvar Kurmukov, Ivan Oseledets

We train our APE model on 8400 publicly available CT images of abdomen and chest regions.

Hierarchical Loss And Geometric Mask Refinement For Multilabel Ribs Segmentation

no code implementations24 May 2024 Aleksei Leonov, Aleksei Zakharov, Sergey Koshelev, Maxim Pisov, Anvar Kurmukov, Mikhail Belyaev

Automatic ribs segmentation and numeration can increase computed tomography assessment speed and reduce radiologists mistakes.

Segmentation

Redesigning Out-of-Distribution Detection on 3D Medical Images

no code implementations7 Aug 2023 Anton Vasiliuk, Daria Frolova, Mikhail Belyaev, Boris Shirokikh

EPD is our core contribution to the new problem design, allowing us to rank methods based on their clinical impact.

Image Segmentation Medical Image Segmentation +3

Solving Sample-Level Out-of-Distribution Detection on 3D Medical Images

1 code implementation13 Dec 2022 Daria Frolova, Anton Vasiliuk, Mikhail Belyaev, Boris Shirokikh

Carefully discussing the limitations, we conclude that our method solves the sample-level OOD detection on 3D medical images in the current setting.

Descriptive Out-of-Distribution Detection +1

Interpretable Vertebral Fracture Quantification via Anchor-Free Landmarks Localization

1 code implementation14 Apr 2022 Alexey Zakharov, Maxim Pisov, Alim Bukharaev, Alexey Petraikin, Sergey Morozov, Victor Gombolevskiy, Mikhail Belyaev

We propose a new two-step algorithm to localize the vertebral column in 3D CT images and then detect individual vertebrae and quantify fractures in 2D simultaneously.

Computed Tomography (CT) Specificity

Negligible effect of brain MRI data preprocessing for tumor segmentation

1 code implementation11 Apr 2022 Ekaterina Kondrateva, Polina Druzhinina, Alexandra Dalechina, Svetlana Zolotova, Andrey Golanov, Boris Shirokikh, Mikhail Belyaev, Anvar Kurmukov

Magnetic resonance imaging (MRI) data is heterogeneous due to differences in device manufacturers, scanning protocols, and inter-subject variability.

Anatomy Image Denoising +3

Adaptation to CT Reconstruction Kernels by Enforcing Cross-domain Feature Maps Consistency

no code implementations28 Mar 2022 Stanislav Shimovolos, Andrey Shushko, Mikhail Belyaev, Boris Shirokikh

In this paper, we show a decrease in the COVID-19 segmentation quality of the model trained on the smooth and tested on the sharp reconstruction kernels.

Computed Tomography (CT) CT Reconstruction +1

Zero-Shot Domain Adaptation in CT Segmentation by Filtered Back Projection Augmentation

1 code implementation18 Jul 2021 Talgat Saparov, Anvar Kurmukov, Boris Shirokikh, Mikhail Belyaev

We analyze a dataset of paired CT images, where smooth and sharp images were reconstructed from the same sinograms with different kernels, thus providing identical anatomy but different style.

Anatomy Computed Tomography (CT) +1

Anatomy of Domain Shift Impact on U-Net Layers in MRI Segmentation

1 code implementation10 Jul 2021 Ivan Zakazov, Boris Shirokikh, Alexey Chernyavskiy, Mikhail Belyaev

Domain Adaptation (DA) methods are widely used in medical image segmentation tasks to tackle the problem of differently distributed train (source) and test (target) data.

Anatomy Domain Generalization +3

Type-Centric Kotlin Compiler Fuzzing: Preserving Test Program Correctness by Preserving Types

no code implementations11 Dec 2020 Daniil Stepanov, Marat Akhin, Mikhail Belyaev

The results show our approach to be significantly better compared to other fuzzing approaches at generating semantically valid Kotlin programs, while creating more interesting crash-inducing inputs at the same time.

Programming Languages Software Engineering

First U-Net Layers Contain More Domain Specific Information Than The Last Ones

1 code implementation17 Aug 2020 Boris Shirokikh, Ivan Zakazov, Alexey Chernyavskiy, Irina Fedulova, Mikhail Belyaev

Our results demonstrate that 1) domain-shift may deteriorate the quality even for a simple brain extraction segmentation task (surface Dice Score drops from 0. 85-0. 89 even to 0. 09); 2) fine-tuning of the first layers significantly outperforms fine-tuning of the last layers in almost all supervised domain adaptation setups.

Diversity Domain Adaptation

CT-based COVID-19 Triage: Deep Multitask Learning Improves Joint Identification and Severity Quantification

no code implementations2 Jun 2020 Mikhail Goncharov, Maxim Pisov, Alexey Shevtsov, Boris Shirokikh, Anvar Kurmukov, Ivan Blokhin, Valeria Chernina, Alexander Solovev, Victor Gombolevskiy, Sergey Morozov, Mikhail Belyaev

We train our model on approximately 2000 publicly available CT studies and test it with a carefully designed set consisting of 32 COVID-19 studies, 30 cases with bacterial pneumonia, 31 healthy patients, and 30 patients with other lung pathologies to emulate a typical patient flow in an out-patient hospital.

Binary Classification

Multi-domain CT Metal Artifacts Reduction Using Partial Convolution Based Inpainting

no code implementations13 Nov 2019 Artem Pimkin, Alexander Samoylenko, Natalia Antipina, Anna Ovechkina, Andrey Golanov, Alexandra Dalechina, Mikhail Belyaev

Recent CT Metal Artifacts Reduction (MAR) methods are often based on image-to-image convolutional neural networks for adjustment of corrupted sinograms or images themselves.

Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge

1 code implementation5 Nov 2018 Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler, Alessandro Crimi, Russell Takeshi Shinohara, Christoph Berger, Sung Min Ha, Martin Rozycki, Marcel Prastawa, Esther Alberts, Jana Lipkova, John Freymann, Justin Kirby, Michel Bilello, Hassan Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Benedikt Wiestler, Rivka Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc-Andre Weber, Abhishek Mahajan, Ujjwal Baid, Elizabeth Gerstner, Dongjin Kwon, Gagan Acharya, Manu Agarwal, Mahbubul Alam, Alberto Albiol, Antonio Albiol, Francisco J. Albiol, Varghese Alex, Nigel Allinson, Pedro H. A. Amorim, Abhijit Amrutkar, Ganesh Anand, Simon Andermatt, Tal Arbel, Pablo Arbelaez, Aaron Avery, Muneeza Azmat, Pranjal B., W Bai, Subhashis Banerjee, Bill Barth, Thomas Batchelder, Kayhan Batmanghelich, Enzo Battistella, Andrew Beers, Mikhail Belyaev, Martin Bendszus, Eze Benson, Jose Bernal, Halandur Nagaraja Bharath, George Biros, Sotirios Bisdas, James Brown, Mariano Cabezas, Shilei Cao, Jorge M. Cardoso, Eric N Carver, Adrià Casamitjana, Laura Silvana Castillo, Marcel Catà, Philippe Cattin, Albert Cerigues, Vinicius S. Chagas, Siddhartha Chandra, Yi-Ju Chang, Shiyu Chang, Ken Chang, Joseph Chazalon, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Chen, Kun Cheng, Ahana Roy Choudhury, Roger Chylla, Albert Clérigues, Steven Colleman, Ramiro German Rodriguez Colmeiro, Marc Combalia, Anthony Costa, Xiaomeng Cui, Zhenzhen Dai, Lutao Dai, Laura Alexandra Daza, Eric Deutsch, Changxing Ding, Chao Dong, Shidu Dong, Wojciech Dudzik, Zach Eaton-Rosen, Gary Egan, Guilherme Escudero, Théo Estienne, Richard Everson, Jonathan Fabrizio, Yong Fan, Longwei Fang, Xue Feng, Enzo Ferrante, Lucas Fidon, Martin Fischer, Andrew P. French, Naomi Fridman, Huan Fu, David Fuentes, Yaozong Gao, Evan Gates, David Gering, Amir Gholami, Willi Gierke, Ben Glocker, Mingming Gong, Sandra González-Villá, T. Grosges, Yuanfang Guan, Sheng Guo, Sudeep Gupta, Woo-Sup Han, Il Song Han, Konstantin Harmuth, Huiguang He, Aura Hernández-Sabaté, Evelyn Herrmann, Naveen Himthani, Winston Hsu, Cheyu Hsu, Xiaojun Hu, Xiaobin Hu, Yan Hu, Yifan Hu, Rui Hua, Teng-Yi Huang, Weilin Huang, Sabine Van Huffel, Quan Huo, Vivek HV, Khan M. Iftekharuddin, Fabian Isensee, Mobarakol Islam, Aaron S. Jackson, Sachin R. Jambawalikar, Andrew Jesson, Weijian Jian, Peter Jin, V Jeya Maria Jose, Alain Jungo, B Kainz, Konstantinos Kamnitsas, Po-Yu Kao, Ayush Karnawat, Thomas Kellermeier, Adel Kermi, Kurt Keutzer, Mohamed Tarek Khadir, Mahendra Khened, Philipp Kickingereder, Geena Kim, Nik King, Haley Knapp, Urspeter Knecht, Lisa Kohli, Deren Kong, Xiangmao Kong, Simon Koppers, Avinash Kori, Ganapathy Krishnamurthi, Egor Krivov, Piyush Kumar, Kaisar Kushibar, Dmitrii Lachinov, Tryphon Lambrou, Joon Lee, Chengen Lee, Yuehchou Lee, M Lee, Szidonia Lefkovits, Laszlo Lefkovits, James Levitt, Tengfei Li, Hongwei Li, Hongyang Li, Xiaochuan Li, Yuexiang Li, Heng Li, Zhenye Li, Xiaoyu Li, Zeju Li, Xiaogang Li, Wenqi Li, Zheng-Shen Lin, Fengming Lin, Pietro Lio, Chang Liu, Boqiang Liu, Xiang Liu, Mingyuan Liu, Ju Liu, Luyan Liu, Xavier Llado, Marc Moreno Lopez, Pablo Ribalta Lorenzo, Zhentai Lu, Lin Luo, Zhigang Luo, Jun Ma, Kai Ma, Thomas Mackie, Anant Madabushi, Issam Mahmoudi, Klaus H. Maier-Hein, Pradipta Maji, CP Mammen, Andreas Mang, B. S. Manjunath, Michal Marcinkiewicz, S McDonagh, Stephen McKenna, Richard McKinley, Miriam Mehl, Sachin Mehta, Raghav Mehta, Raphael Meier, Christoph Meinel, Dorit Merhof, Craig Meyer, Robert Miller, Sushmita Mitra, Aliasgar Moiyadi, David Molina-Garcia, Miguel A. B. Monteiro, Grzegorz Mrukwa, Andriy Myronenko, Jakub Nalepa, Thuyen Ngo, Dong Nie, Holly Ning, Chen Niu, Nicholas K Nuechterlein, Eric Oermann, Arlindo Oliveira, Diego D. C. Oliveira, Arnau Oliver, Alexander F. I. Osman, Yu-Nian Ou, Sebastien Ourselin, Nikos Paragios, Moo Sung Park, Brad Paschke, J. Gregory Pauloski, Kamlesh Pawar, Nick Pawlowski, Linmin Pei, Suting Peng, Silvio M. Pereira, Julian Perez-Beteta, Victor M. Perez-Garcia, Simon Pezold, Bao Pham, Ashish Phophalia, Gemma Piella, G. N. Pillai, Marie Piraud, Maxim Pisov, Anmol Popli, Michael P. Pound, Reza Pourreza, Prateek Prasanna, Vesna Prkovska, Tony P. Pridmore, Santi Puch, Élodie Puybareau, Buyue Qian, Xu Qiao, Martin Rajchl, Swapnil Rane, Michael Rebsamen, Hongliang Ren, Xuhua Ren, Karthik Revanuru, Mina Rezaei, Oliver Rippel, Luis Carlos Rivera, Charlotte Robert, Bruce Rosen, Daniel Rueckert, Mohammed Safwan, Mostafa Salem, Joaquim Salvi, Irina Sanchez, Irina Sánchez, Heitor M. Santos, Emmett Sartor, Dawid Schellingerhout, Klaudius Scheufele, Matthew R. Scott, Artur A. Scussel, Sara Sedlar, Juan Pablo Serrano-Rubio, N. Jon Shah, Nameetha Shah, Mazhar Shaikh, B. Uma Shankar, Zeina Shboul, Haipeng Shen, Dinggang Shen, Linlin Shen, Haocheng Shen, Varun Shenoy, Feng Shi, Hyung Eun Shin, Hai Shu, Diana Sima, M Sinclair, Orjan Smedby, James M. Snyder, Mohammadreza Soltaninejad, Guidong Song, Mehul Soni, Jean Stawiaski, Shashank Subramanian, Li Sun, Roger Sun, Jiawei Sun, Kay Sun, Yu Sun, Guoxia Sun, Shuang Sun, Yannick R Suter, Laszlo Szilagyi, Sanjay Talbar, DaCheng Tao, Zhongzhao Teng, Siddhesh Thakur, Meenakshi H Thakur, Sameer Tharakan, Pallavi Tiwari, Guillaume Tochon, Tuan Tran, Yuhsiang M. Tsai, Kuan-Lun Tseng, Tran Anh Tuan, Vadim Turlapov, Nicholas Tustison, Maria Vakalopoulou, Sergi Valverde, Rami Vanguri, Evgeny Vasiliev, Jonathan Ventura, Luis Vera, Tom Vercauteren, C. A. Verrastro, Lasitha Vidyaratne, Veronica Vilaplana, Ajeet Vivekanandan, Qian Wang, Chiatse J. Wang, Wei-Chung Wang, Duo Wang, Ruixuan Wang, Yuanyuan Wang, Chunliang Wang, Guotai Wang, Ning Wen, Xin Wen, Leon Weninger, Wolfgang Wick, Shaocheng Wu, Qiang Wu, Yihong Wu, Yong Xia, Yanwu Xu, Xiaowen Xu, Peiyuan Xu, Tsai-Ling Yang, Xiaoping Yang, Hao-Yu Yang, Junlin Yang, Haojin Yang, Guang Yang, Hongdou Yao, Xujiong Ye, Changchang Yin, Brett Young-Moxon, Jinhua Yu, Xiangyu Yue, Songtao Zhang, Angela Zhang, Kun Zhang, Xue-jie Zhang, Lichi Zhang, Xiaoyue Zhang, Yazhuo Zhang, Lei Zhang, Jian-Guo Zhang, Xiang Zhang, Tianhao Zhang, Sicheng Zhao, Yu Zhao, Xiaomei Zhao, Liang Zhao, Yefeng Zheng, Liming Zhong, Chenhong Zhou, Xiaobing Zhou, Fan Zhou, Hongtu Zhu, Jin Zhu, Ying Zhuge, Weiwei Zong, Jayashree Kalpathy-Cramer, Keyvan Farahani, Christos Davatzikos, Koen van Leemput, Bjoern Menze

This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i. e., 2012-2018.

Brain Tumor Segmentation Survival Prediction +1

Brain Tumor Image Retrieval via Multitask Learning

no code implementations22 Oct 2018 Maxim Pisov, Gleb Makarchuk, Valery Kostjuchenko, Alexandra Dalechina, Andrey Golanov, Mikhail Belyaev

Classification-based image retrieval systems are built by training convolutional neural networks (CNNs) on a relevant classification problem and using the distance in the resulting feature space as a similarity metric.

Classification General Classification +2

Predicting Conversion of Mild Cognitive Impairments to Alzheimer's Disease and Exploring Impact of Neuroimaging

no code implementations30 Jul 2018 Yaroslav Shmulev, Mikhail Belyaev

First of all, we applied state-of-the-art deep learning algorithms on the neuroimaging data and compared these results with two machine learning algorithms that we fit using the clinical data.

Deep Learning

Structural Connectome Validation Using Pairwise Classification

no code implementations26 Jan 2017 Dmitry Petrov, Boris Gutman, Alexander Ivanov, Joshua Faskowitz, Neda Jahanshad, Mikhail Belyaev, Paul Thompson

In this work, we study the extent to which structural connectomes and topological derivative measures are unique to individual changes within human brains.

Classification General Classification

Residual and Plain Convolutional Neural Networks for 3D Brain MRI Classification

3 code implementations23 Jan 2017 Sergey Korolev, Amir Safiullin, Mikhail Belyaev, Yulia Dodonova

In the recent years there have been a number of studies that applied deep learning algorithms to neuroimaging data.

Classification Deep Learning +2

Cannot find the paper you are looking for? You can Submit a new open access paper.