no code implementations • 12 Feb 2025 • Mikhail Goncharov, Eugenia Soboleva, Mariia Donskova, Ivan Oseledets, Marina Munkhoeva, Maxim Panov
Accurate segmentation of all pathological findings in 3D medical images remains a significant challenge, as supervised models are limited to detecting only the few pathology classes annotated in existing datasets.
no code implementations • 31 Jan 2025 • David Li, Anvar Kurmukov, Mikhail Goncharov, Roman Sokolov, Mikhail Belyaev
We introduce an auxiliary diffusion process to pretrain a model that produce generalizable feature representations, useful for a variety of downstream segmentation tasks.
1 code implementation • 19 Dec 2024 • Daniil Averkov, Tatiana Belova, Gregory Emdin, Mikhail Goncharov, Viktoriia Krivogornitsyna, Alexander S. Kulikov, Fedor Kurmazov, Daniil Levtsov, Georgie Levtsov, Vsevolod Vaskin, Aleksey Vorobiev
We present an open-source tool for manipulating Boolean circuits.
1 code implementation • 16 Sep 2024 • Mikhail Goncharov, Valentin Samokhin, Eugenia Soboleva, Roman Sokolov, Boris Shirokikh, Mikhail Belyaev, Anvar Kurmukov, Ivan Oseledets
We train our APE model on 8400 publicly available CT images of abdomen and chest regions.
1 code implementation • 27 Jul 2023 • Mikhail Goncharov, Vera Soboleva, Anvar Kurmukov, Maxim Pisov, Mikhail Belyaev
This paper introduces vox2vec - a contrastive method for self-supervised learning (SSL) of voxel-level representations.
no code implementations • 2 Jun 2020 • Mikhail Goncharov, Maxim Pisov, Alexey Shevtsov, Boris Shirokikh, Anvar Kurmukov, Ivan Blokhin, Valeria Chernina, Alexander Solovev, Victor Gombolevskiy, Sergey Morozov, Mikhail Belyaev
We train our model on approximately 2000 publicly available CT studies and test it with a carefully designed set consisting of 32 COVID-19 studies, 30 cases with bacterial pneumonia, 31 healthy patients, and 30 patients with other lung pathologies to emulate a typical patient flow in an out-patient hospital.
1 code implementation • 13 Aug 2019 • Maxim Pisov, Mikhail Goncharov, Nadezhda Kurochkina, Sergey Morozov, Victor Gombolevskiy, Valeria Chernina, Anton Vladzymyrskyy, Ksenia Zamyatina, Anna Chesnokova, Igor Pronin, Michael Shifrin, Mikhail Belyaev
Midline shift (MLS) is a well-established factor used for outcome prediction in traumatic brain injury, stroke and brain tumors.