Search Results for author: Ming Zhang

Found 140 papers, 50 papers with code

Focus-Driven Contrastive Learning for Medical Question Summarization

no code implementations COLING 2022 Ming Zhang, Shuai Dou, Ziyang Wang, Yunfang Wu

Automatic medical question summarization can significantly help the system to understand consumer health questions and retrieve correct answers.

Contrastive Learning Decoder +1

Pathway2Text: Dataset and Method for Biomedical Pathway Description Generation

1 code implementation Findings (NAACL) 2022 Junwei Yang, Zequn Liu, Ming Zhang, Sheng Wang

Collectively, we envision our method will become an important benchmark for evaluating Graph2Text methods and advance biomedical research for complex diseases.

named-entity-recognition Named Entity Recognition +2

Rank and Align: Towards Effective Source-free Graph Domain Adaptation

no code implementations22 Aug 2024 Junyu Luo, Zhiping Xiao, Yifan Wang, Xiao Luo, Jingyang Yuan, Wei Ju, Langechuan Liu, Ming Zhang

To this end, we investigate an underexplored yet practical problem of source-free graph domain adaptation, which transfers knowledge from source models instead of source graphs to a target domain.

Domain Adaptation GRAPH DOMAIN ADAPTATION

AquilaMoE: Efficient Training for MoE Models with Scale-Up and Scale-Out Strategies

1 code implementation13 Aug 2024 Bo-Wen Zhang, Liangdong Wang, Ye Yuan, Jijie Li, Shuhao Gu, Mengdi Zhao, Xinya Wu, Guang Liu, ChengWei Wu, Hanyu Zhao, Li Du, Yiming Ju, Quanyue Ma, Yulong Ao, Yingli Zhao, Songhe Zhu, Zhou Cao, Dong Liang, Yonghua Lin, Ming Zhang, Shunfei Wang, Yanxin Zhou, Min Ye, Xuekai Chen, Xinyang Yu, Xiangjun Huang, Jian Yang

In this paper, we present AquilaMoE, a cutting-edge bilingual 8*16B Mixture of Experts (MoE) language model that has 8 experts with 16 billion parameters each and is developed using an innovative training methodology called EfficientScale.

Language Modelling Transfer Learning

A Hybrid RAG System with Comprehensive Enhancement on Complex Reasoning

no code implementations9 Aug 2024 Ye Yuan, Chengwu Liu, Jingyang Yuan, Gongbo Sun, Siqi Li, Ming Zhang

Both the local and online evaluations demonstrate that our system significantly enhances complex reasoning capabilities.

Attribute RAG +1

DisenSemi: Semi-supervised Graph Classification via Disentangled Representation Learning

1 code implementation19 Jul 2024 Yifan Wang, Xiao Luo, Chong Chen, Xian-Sheng Hua, Ming Zhang, Wei Ju

To ensure the meaningful transfer of knowledge from the unsupervised encoder to the supervised one, we further define an MI-based disentangled consistency regularization between two models and identify the corresponding rationale that aligns well with the current graph classification task.

Graph Classification Representation Learning

Vision-Braille: An End-to-End Tool for Chinese Braille Image-to-Text Translation

no code implementations8 Jul 2024 Alan Wu, Ye Yuan, Ming Zhang

By incorporating the braille recognition algorithm, this project is the first publicly available braille translation system and can benefit lots of visually impaired students and families who are preparing for the Chinese College Test and help to propel their college dreams in the future.

Translation

MMEvalPro: Calibrating Multimodal Benchmarks Towards Trustworthy and Efficient Evaluation

1 code implementation29 Jun 2024 Jinsheng Huang, Liang Chen, Taian Guo, Fu Zeng, Yusheng Zhao, Bohan Wu, Ye Yuan, Haozhe Zhao, Zhihui Guo, Yichi Zhang, Jingyang Yuan, Wei Ju, Luchen Liu, Tianyu Liu, Baobao Chang, Ming Zhang

Large Multimodal Models (LMMs) exhibit impressive cross-modal understanding and reasoning abilities, often assessed through multiple-choice questions (MCQs) that include an image, a question, and several options.

Multiple-choice

Hypergraph-enhanced Dual Semi-supervised Graph Classification

no code implementations8 May 2024 Wei Ju, Zhengyang Mao, Siyu Yi, Yifang Qin, Yiyang Gu, Zhiping Xiao, Yifan Wang, Xiao Luo, Ming Zhang

In this paper, we study semi-supervised graph classification, which aims at accurately predicting the categories of graphs in scenarios with limited labeled graphs and abundant unlabeled graphs.

Graph Classification Transfer Learning

All in One Framework for Multimodal Re-identification in the Wild

no code implementations CVPR 2024 He Li, Mang Ye, Ming Zhang, Bo Du

In Re-identification (ReID), recent advancements yield noteworthy progress in both unimodal and cross-modal retrieval tasks.

Cross-Modal Retrieval Domain Generalization +1

Exploring the Compositional Deficiency of Large Language Models in Mathematical Reasoning

1 code implementation5 May 2024 Jun Zhao, Jingqi Tong, Yurong Mou, Ming Zhang, Qi Zhang, Xuanjing Huang

In this work, we investigate the compositionality of large language models (LLMs) in mathematical reasoning.

GSM8K Math +1

Measuring Social Norms of Large Language Models

no code implementations3 Apr 2024 Ye Yuan, Kexin Tang, Jianhao Shen, Ming Zhang, Chenguang Wang

This enables the direct comparison of the social understanding of large language models to humans, more specifically, elementary students.

Multi-modal Semantic Understanding with Contrastive Cross-modal Feature Alignment

no code implementations11 Mar 2024 Ming Zhang, Ke Chang, Yunfang Wu

Multi-modal semantic understanding requires integrating information from different modalities to extract users' real intention behind words.

Contrastive Learning Sarcasm Detection +1

Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

1 code implementation8 Mar 2024 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, Soroosh Mariooryad, Yifan Ding, Xinyang Geng, Fred Alcober, Roy Frostig, Mark Omernick, Lexi Walker, Cosmin Paduraru, Christina Sorokin, Andrea Tacchetti, Colin Gaffney, Samira Daruki, Olcan Sercinoglu, Zach Gleicher, Juliette Love, Paul Voigtlaender, Rohan Jain, Gabriela Surita, Kareem Mohamed, Rory Blevins, Junwhan Ahn, Tao Zhu, Kornraphop Kawintiranon, Orhan Firat, Yiming Gu, Yujing Zhang, Matthew Rahtz, Manaal Faruqui, Natalie Clay, Justin Gilmer, JD Co-Reyes, Ivo Penchev, Rui Zhu, Nobuyuki Morioka, Kevin Hui, Krishna Haridasan, Victor Campos, Mahdis Mahdieh, Mandy Guo, Samer Hassan, Kevin Kilgour, Arpi Vezer, Heng-Tze Cheng, Raoul de Liedekerke, Siddharth Goyal, Paul Barham, DJ Strouse, Seb Noury, Jonas Adler, Mukund Sundararajan, Sharad Vikram, Dmitry Lepikhin, Michela Paganini, Xavier Garcia, Fan Yang, Dasha Valter, Maja Trebacz, Kiran Vodrahalli, Chulayuth Asawaroengchai, Roman Ring, Norbert Kalb, Livio Baldini Soares, Siddhartha Brahma, David Steiner, Tianhe Yu, Fabian Mentzer, Antoine He, Lucas Gonzalez, Bibo Xu, Raphael Lopez Kaufman, Laurent El Shafey, Junhyuk Oh, Tom Hennigan, George van den Driessche, Seth Odoom, Mario Lucic, Becca Roelofs, Sid Lall, Amit Marathe, Betty Chan, Santiago Ontanon, Luheng He, Denis Teplyashin, Jonathan Lai, Phil Crone, Bogdan Damoc, Lewis Ho, Sebastian Riedel, Karel Lenc, Chih-Kuan Yeh, Aakanksha Chowdhery, Yang Xu, Mehran Kazemi, Ehsan Amid, Anastasia Petrushkina, Kevin Swersky, Ali Khodaei, Gowoon Chen, Chris Larkin, Mario Pinto, Geng Yan, Adria Puigdomenech Badia, Piyush Patil, Steven Hansen, Dave Orr, Sebastien M. R. Arnold, Jordan Grimstad, Andrew Dai, Sholto Douglas, Rishika Sinha, Vikas Yadav, Xi Chen, Elena Gribovskaya, Jacob Austin, Jeffrey Zhao, Kaushal Patel, Paul Komarek, Sophia Austin, Sebastian Borgeaud, Linda Friso, Abhimanyu Goyal, Ben Caine, Kris Cao, Da-Woon Chung, Matthew Lamm, Gabe Barth-Maron, Thais Kagohara, Kate Olszewska, Mia Chen, Kaushik Shivakumar, Rishabh Agarwal, Harshal Godhia, Ravi Rajwar, Javier Snaider, Xerxes Dotiwalla, YuAn Liu, Aditya Barua, Victor Ungureanu, Yuan Zhang, Bat-Orgil Batsaikhan, Mateo Wirth, James Qin, Ivo Danihelka, Tulsee Doshi, Martin Chadwick, Jilin Chen, Sanil Jain, Quoc Le, Arjun Kar, Madhu Gurumurthy, Cheng Li, Ruoxin Sang, Fangyu Liu, Lampros Lamprou, Rich Munoz, Nathan Lintz, Harsh Mehta, Heidi Howard, Malcolm Reynolds, Lora Aroyo, Quan Wang, Lorenzo Blanco, Albin Cassirer, Jordan Griffith, Dipanjan Das, Stephan Lee, Jakub Sygnowski, Zach Fisher, James Besley, Richard Powell, Zafarali Ahmed, Dominik Paulus, David Reitter, Zalan Borsos, Rishabh Joshi, Aedan Pope, Steven Hand, Vittorio Selo, Vihan Jain, Nikhil Sethi, Megha Goel, Takaki Makino, Rhys May, Zhen Yang, Johan Schalkwyk, Christina Butterfield, Anja Hauth, Alex Goldin, Will Hawkins, Evan Senter, Sergey Brin, Oliver Woodman, Marvin Ritter, Eric Noland, Minh Giang, Vijay Bolina, Lisa Lee, Tim Blyth, Ian Mackinnon, Machel Reid, Obaid Sarvana, David Silver, Alexander Chen, Lily Wang, Loren Maggiore, Oscar Chang, Nithya Attaluri, Gregory Thornton, Chung-Cheng Chiu, Oskar Bunyan, Nir Levine, Timothy Chung, Evgenii Eltyshev, Xiance Si, Timothy Lillicrap, Demetra Brady, Vaibhav Aggarwal, Boxi Wu, Yuanzhong Xu, Ross Mcilroy, Kartikeya Badola, Paramjit Sandhu, Erica Moreira, Wojciech Stokowiec, Ross Hemsley, Dong Li, Alex Tudor, Pranav Shyam, Elahe Rahimtoroghi, Salem Haykal, Pablo Sprechmann, Xiang Zhou, Diana Mincu, Yujia Li, Ravi Addanki, Kalpesh Krishna, Xiao Wu, Alexandre Frechette, Matan Eyal, Allan Dafoe, Dave Lacey, Jay Whang, Thi Avrahami, Ye Zhang, Emanuel Taropa, Hanzhao Lin, Daniel Toyama, Eliza Rutherford, Motoki Sano, HyunJeong Choe, Alex Tomala, Chalence Safranek-Shrader, Nora Kassner, Mantas Pajarskas, Matt Harvey, Sean Sechrist, Meire Fortunato, Christina Lyu, Gamaleldin Elsayed, Chenkai Kuang, James Lottes, Eric Chu, Chao Jia, Chih-Wei Chen, Peter Humphreys, Kate Baumli, Connie Tao, Rajkumar Samuel, Cicero Nogueira dos santos, Anders Andreassen, Nemanja Rakićević, Dominik Grewe, Aviral Kumar, Stephanie Winkler, Jonathan Caton, Andrew Brock, Sid Dalmia, Hannah Sheahan, Iain Barr, Yingjie Miao, Paul Natsev, Jacob Devlin, Feryal Behbahani, Flavien Prost, Yanhua Sun, Artiom Myaskovsky, Thanumalayan Sankaranarayana Pillai, Dan Hurt, Angeliki Lazaridou, Xi Xiong, Ce Zheng, Fabio Pardo, Dan Horgan, Joe Stanton, Moran Ambar, Fei Xia, Alejandro Lince, Mingqiu Wang, Basil Mustafa, Albert Webson, Hyo Lee, Rohan Anil, Martin Wicke, Timothy Dozat, Abhishek Sinha, Enrique Piqueras, Elahe Dabir, Shyam Upadhyay, Anudhyan Boral, Lisa Anne Hendricks, Corey Fry, Josip Djolonga, Yi Su, Jake Walker, Jane Labanowski, Ronny Huang, Vedant Misra, Jeremy Chen, RJ Skerry-Ryan, Avi Singh, Shruti Rijhwani, Dian Yu, Alex Castro-Ros, Beer Changpinyo, Romina Datta, Sumit Bagri, Arnar Mar Hrafnkelsson, Marcello Maggioni, Daniel Zheng, Yury Sulsky, Shaobo Hou, Tom Le Paine, Antoine Yang, Jason Riesa, Dominika Rogozinska, Dror Marcus, Dalia El Badawy, Qiao Zhang, Luyu Wang, Helen Miller, Jeremy Greer, Lars Lowe Sjos, Azade Nova, Heiga Zen, Rahma Chaabouni, Mihaela Rosca, Jiepu Jiang, Charlie Chen, Ruibo Liu, Tara Sainath, Maxim Krikun, Alex Polozov, Jean-Baptiste Lespiau, Josh Newlan, Zeyncep Cankara, Soo Kwak, Yunhan Xu, Phil Chen, Andy Coenen, Clemens Meyer, Katerina Tsihlas, Ada Ma, Juraj Gottweis, Jinwei Xing, Chenjie Gu, Jin Miao, Christian Frank, Zeynep Cankara, Sanjay Ganapathy, Ishita Dasgupta, Steph Hughes-Fitt, Heng Chen, David Reid, Keran Rong, Hongmin Fan, Joost van Amersfoort, Vincent Zhuang, Aaron Cohen, Shixiang Shane Gu, Anhad Mohananey, Anastasija Ilic, Taylor Tobin, John Wieting, Anna Bortsova, Phoebe Thacker, Emma Wang, Emily Caveness, Justin Chiu, Eren Sezener, Alex Kaskasoli, Steven Baker, Katie Millican, Mohamed Elhawaty, Kostas Aisopos, Carl Lebsack, Nathan Byrd, Hanjun Dai, Wenhao Jia, Matthew Wiethoff, Elnaz Davoodi, Albert Weston, Lakshman Yagati, Arun Ahuja, Isabel Gao, Golan Pundak, Susan Zhang, Michael Azzam, Khe Chai Sim, Sergi Caelles, James Keeling, Abhanshu Sharma, Andy Swing, Yaguang Li, Chenxi Liu, Carrie Grimes Bostock, Yamini Bansal, Zachary Nado, Ankesh Anand, Josh Lipschultz, Abhijit Karmarkar, Lev Proleev, Abe Ittycheriah, Soheil Hassas Yeganeh, George Polovets, Aleksandra Faust, Jiao Sun, Alban Rrustemi, Pen Li, Rakesh Shivanna, Jeremiah Liu, Chris Welty, Federico Lebron, Anirudh Baddepudi, Sebastian Krause, Emilio Parisotto, Radu Soricut, Zheng Xu, Dawn Bloxwich, Melvin Johnson, Behnam Neyshabur, Justin Mao-Jones, Renshen Wang, Vinay Ramasesh, Zaheer Abbas, Arthur Guez, Constant Segal, Duc Dung Nguyen, James Svensson, Le Hou, Sarah York, Kieran Milan, Sophie Bridgers, Wiktor Gworek, Marco Tagliasacchi, James Lee-Thorp, Michael Chang, Alexey Guseynov, Ale Jakse Hartman, Michael Kwong, Ruizhe Zhao, Sheleem Kashem, Elizabeth Cole, Antoine Miech, Richard Tanburn, Mary Phuong, Filip Pavetic, Sebastien Cevey, Ramona Comanescu, Richard Ives, Sherry Yang, Cosmo Du, Bo Li, Zizhao Zhang, Mariko Iinuma, Clara Huiyi Hu, Aurko Roy, Shaan Bijwadia, Zhenkai Zhu, Danilo Martins, Rachel Saputro, Anita Gergely, Steven Zheng, Dawei Jia, Ioannis Antonoglou, Adam Sadovsky, Shane Gu, Yingying Bi, Alek Andreev, Sina Samangooei, Mina Khan, Tomas Kocisky, Angelos Filos, Chintu Kumar, Colton Bishop, Adams Yu, Sarah Hodkinson, Sid Mittal, Premal Shah, Alexandre Moufarek, Yong Cheng, Adam Bloniarz, Jaehoon Lee, Pedram Pejman, Paul Michel, Stephen Spencer, Vladimir Feinberg, Xuehan Xiong, Nikolay Savinov, Charlotte Smith, Siamak Shakeri, Dustin Tran, Mary Chesus, Bernd Bohnet, George Tucker, Tamara von Glehn, Carrie Muir, Yiran Mao, Hideto Kazawa, Ambrose Slone, Kedar Soparkar, Disha Shrivastava, James Cobon-Kerr, Michael Sharman, Jay Pavagadhi, Carlos Araya, Karolis Misiunas, Nimesh Ghelani, Michael Laskin, David Barker, Qiujia Li, Anton Briukhov, Neil Houlsby, Mia Glaese, Balaji Lakshminarayanan, Nathan Schucher, Yunhao Tang, Eli Collins, Hyeontaek Lim, Fangxiaoyu Feng, Adria Recasens, Guangda Lai, Alberto Magni, Nicola De Cao, Aditya Siddhant, Zoe Ashwood, Jordi Orbay, Mostafa Dehghani, Jenny Brennan, Yifan He, Kelvin Xu, Yang Gao, Carl Saroufim, James Molloy, Xinyi Wu, Seb Arnold, Solomon Chang, Julian Schrittwieser, Elena Buchatskaya, Soroush Radpour, Martin Polacek, Skye Giordano, Ankur Bapna, Simon Tokumine, Vincent Hellendoorn, Thibault Sottiaux, Sarah Cogan, Aliaksei Severyn, Mohammad Saleh, Shantanu Thakoor, Laurent Shefey, Siyuan Qiao, Meenu Gaba, Shuo-Yiin Chang, Craig Swanson, Biao Zhang, Benjamin Lee, Paul Kishan Rubenstein, Gan Song, Tom Kwiatkowski, Anna Koop, Ajay Kannan, David Kao, Parker Schuh, Axel Stjerngren, Golnaz Ghiasi, Gena Gibson, Luke Vilnis, Ye Yuan, Felipe Tiengo Ferreira, Aishwarya Kamath, Ted Klimenko, Ken Franko, Kefan Xiao, Indro Bhattacharya, Miteyan Patel, Rui Wang, Alex Morris, Robin Strudel, Vivek Sharma, Peter Choy, Sayed Hadi Hashemi, Jessica Landon, Mara Finkelstein, Priya Jhakra, Justin Frye, Megan Barnes, Matthew Mauger, Dennis Daun, Khuslen Baatarsukh, Matthew Tung, Wael Farhan, Henryk Michalewski, Fabio Viola, Felix de Chaumont Quitry, Charline Le Lan, Tom Hudson, Qingze Wang, Felix Fischer, Ivy Zheng, Elspeth White, Anca Dragan, Jean-Baptiste Alayrac, Eric Ni, Alexander Pritzel, Adam Iwanicki, Michael Isard, Anna Bulanova, Lukas Zilka, Ethan Dyer, Devendra Sachan, Srivatsan Srinivasan, Hannah Muckenhirn, Honglong Cai, Amol Mandhane, Mukarram Tariq, Jack W. Rae, Gary Wang, Kareem Ayoub, Nicholas FitzGerald, Yao Zhao, Woohyun Han, Chris Alberti, Dan Garrette, Kashyap Krishnakumar, Mai Gimenez, Anselm Levskaya, Daniel Sohn, Josip Matak, Inaki Iturrate, Michael B. Chang, Jackie Xiang, Yuan Cao, Nishant Ranka, Geoff Brown, Adrian Hutter, Nanxin Chen, Kaisheng Yao, Zoltan Egyed, Francois Galilee, Tyler Liechty, Praveen Kallakuri, Evan Palmer, Sanjay Ghemawat, Jasmine Liu, David Tao, Chloe Thornton, Tim Green, Mimi Jasarevic, Sharon Lin, Victor Cotruta, Yi-Xuan Tan, Noah Fiedel, Hongkun Yu, Ed Chi, Alexander Neitz, Jens Heitkaemper, Anu Sinha, Denny Zhou, Yi Sun, Charbel Kaed, Brice Hulse, Swaroop Mishra, Maria Georgaki, Sneha Kudugunta, Clement Farabet, Izhak Shafran, Daniel Vlasic, Anton Tsitsulin, Rajagopal Ananthanarayanan, Alen Carin, Guolong Su, Pei Sun, Shashank V, Gabriel Carvajal, Josef Broder, Iulia Comsa, Alena Repina, William Wong, Warren Weilun Chen, Peter Hawkins, Egor Filonov, Lucia Loher, Christoph Hirnschall, Weiyi Wang, Jingchen Ye, Andrea Burns, Hardie Cate, Diana Gage Wright, Federico Piccinini, Lei Zhang, Chu-Cheng Lin, Ionel Gog, Yana Kulizhskaya, Ashwin Sreevatsa, Shuang Song, Luis C. Cobo, Anand Iyer, Chetan Tekur, Guillermo Garrido, Zhuyun Xiao, Rupert Kemp, Huaixiu Steven Zheng, Hui Li, Ananth Agarwal, Christel Ngani, Kati Goshvadi, Rebeca Santamaria-Fernandez, Wojciech Fica, Xinyun Chen, Chris Gorgolewski, Sean Sun, Roopal Garg, Xinyu Ye, S. M. Ali Eslami, Nan Hua, Jon Simon, Pratik Joshi, Yelin Kim, Ian Tenney, Sahitya Potluri, Lam Nguyen Thiet, Quan Yuan, Florian Luisier, Alexandra Chronopoulou, Salvatore Scellato, Praveen Srinivasan, Minmin Chen, Vinod Koverkathu, Valentin Dalibard, Yaming Xu, Brennan Saeta, Keith Anderson, Thibault Sellam, Nick Fernando, Fantine Huot, Junehyuk Jung, Mani Varadarajan, MICHAEL QUINN, Amit Raul, Maigo Le, Ruslan Habalov, Jon Clark, Komal Jalan, Kalesha Bullard, Achintya Singhal, Thang Luong, Boyu Wang, Sujeevan Rajayogam, Julian Eisenschlos, Johnson Jia, Daniel Finchelstein, Alex Yakubovich, Daniel Balle, Michael Fink, Sameer Agarwal, Jing Li, DJ Dvijotham, Shalini Pal, Kai Kang, Jaclyn Konzelmann, Jennifer Beattie, Olivier Dousse, Diane Wu, Remi Crocker, Chen Elkind, Siddhartha Reddy Jonnalagadda, Jong Lee, Dan Holtmann-Rice, Krystal Kallarackal, Rosanne Liu, Denis Vnukov, Neera Vats, Luca Invernizzi, Mohsen Jafari, Huanjie Zhou, Lilly Taylor, Jennifer Prendki, Marcus Wu, Tom Eccles, Tianqi Liu, Kavya Kopparapu, Francoise Beaufays, Christof Angermueller, Andreea Marzoca, Shourya Sarcar, Hilal Dib, Jeff Stanway, Frank Perbet, Nejc Trdin, Rachel Sterneck, Andrey Khorlin, Dinghua Li, Xihui Wu, Sonam Goenka, David Madras, Sasha Goldshtein, Willi Gierke, Tong Zhou, Yaxin Liu, Yannie Liang, Anais White, Yunjie Li, Shreya Singh, Sanaz Bahargam, Mark Epstein, Sujoy Basu, Li Lao, Adnan Ozturel, Carl Crous, Alex Zhai, Han Lu, Zora Tung, Neeraj Gaur, Alanna Walton, Lucas Dixon, Ming Zhang, Amir Globerson, Grant Uy, Andrew Bolt, Olivia Wiles, Milad Nasr, Ilia Shumailov, Marco Selvi, Francesco Piccinno, Ricardo Aguilar, Sara McCarthy, Misha Khalman, Mrinal Shukla, Vlado Galic, John Carpenter, Kevin Villela, Haibin Zhang, Harry Richardson, James Martens, Matko Bosnjak, Shreyas Rammohan Belle, Jeff Seibert, Mahmoud Alnahlawi, Brian McWilliams, Sankalp Singh, Annie Louis, Wen Ding, Dan Popovici, Lenin Simicich, Laura Knight, Pulkit Mehta, Nishesh Gupta, Chongyang Shi, Saaber Fatehi, Jovana Mitrovic, Alex Grills, Joseph Pagadora, Dessie Petrova, Danielle Eisenbud, Zhishuai Zhang, Damion Yates, Bhavishya Mittal, Nilesh Tripuraneni, Yannis Assael, Thomas Brovelli, Prateek Jain, Mihajlo Velimirovic, Canfer Akbulut, Jiaqi Mu, Wolfgang Macherey, Ravin Kumar, Jun Xu, Haroon Qureshi, Gheorghe Comanici, Jeremy Wiesner, Zhitao Gong, Anton Ruddock, Matthias Bauer, Nick Felt, Anirudh GP, Anurag Arnab, Dustin Zelle, Jonas Rothfuss, Bill Rosgen, Ashish Shenoy, Bryan Seybold, Xinjian Li, Jayaram Mudigonda, Goker Erdogan, Jiawei Xia, Jiri Simsa, Andrea Michi, Yi Yao, Christopher Yew, Steven Kan, Isaac Caswell, Carey Radebaugh, Andre Elisseeff, Pedro Valenzuela, Kay McKinney, Kim Paterson, Albert Cui, Eri Latorre-Chimoto, Solomon Kim, William Zeng, Ken Durden, Priya Ponnapalli, Tiberiu Sosea, Christopher A. Choquette-Choo, James Manyika, Brona Robenek, Harsha Vashisht, Sebastien Pereira, Hoi Lam, Marko Velic, Denese Owusu-Afriyie, Katherine Lee, Tolga Bolukbasi, Alicia Parrish, Shawn Lu, Jane Park, Balaji Venkatraman, Alice Talbert, Lambert Rosique, Yuchung Cheng, Andrei Sozanschi, Adam Paszke, Praveen Kumar, Jessica Austin, Lu Li, Khalid Salama, Wooyeol Kim, Nandita Dukkipati, Anthony Baryshnikov, Christos Kaplanis, XiangHai Sheng, Yuri Chervonyi, Caglar Unlu, Diego de Las Casas, Harry Askham, Kathryn Tunyasuvunakool, Felix Gimeno, Siim Poder, Chester Kwak, Matt Miecnikowski, Vahab Mirrokni, Alek Dimitriev, Aaron Parisi, Dangyi Liu, Tomy Tsai, Toby Shevlane, Christina Kouridi, Drew Garmon, Adrian Goedeckemeyer, Adam R. Brown, Anitha Vijayakumar, Ali Elqursh, Sadegh Jazayeri, Jin Huang, Sara Mc Carthy, Jay Hoover, Lucy Kim, Sandeep Kumar, Wei Chen, Courtney Biles, Garrett Bingham, Evan Rosen, Lisa Wang, Qijun Tan, David Engel, Francesco Pongetti, Dario de Cesare, Dongseong Hwang, Lily Yu, Jennifer Pullman, Srini Narayanan, Kyle Levin, Siddharth Gopal, Megan Li, Asaf Aharoni, Trieu Trinh, Jessica Lo, Norman Casagrande, Roopali Vij, Loic Matthey, Bramandia Ramadhana, Austin Matthews, CJ Carey, Matthew Johnson, Kremena Goranova, Rohin Shah, Shereen Ashraf, Kingshuk Dasgupta, Rasmus Larsen, Yicheng Wang, Manish Reddy Vuyyuru, Chong Jiang, Joana Ijazi, Kazuki Osawa, Celine Smith, Ramya Sree Boppana, Taylan Bilal, Yuma Koizumi, Ying Xu, Yasemin Altun, Nir Shabat, Ben Bariach, Alex Korchemniy, Kiam Choo, Olaf Ronneberger, Chimezie Iwuanyanwu, Shubin Zhao, David Soergel, Cho-Jui Hsieh, Irene Cai, Shariq Iqbal, Martin Sundermeyer, Zhe Chen, Elie Bursztein, Chaitanya Malaviya, Fadi Biadsy, Prakash Shroff, Inderjit Dhillon, Tejasi Latkar, Chris Dyer, Hannah Forbes, Massimo Nicosia, Vitaly Nikolaev, Somer Greene, Marin Georgiev, Pidong Wang, Nina Martin, Hanie Sedghi, John Zhang, Praseem Banzal, Doug Fritz, Vikram Rao, Xuezhi Wang, Jiageng Zhang, Viorica Patraucean, Dayou Du, Igor Mordatch, Ivan Jurin, Lewis Liu, Ayush Dubey, Abhi Mohan, Janek Nowakowski, Vlad-Doru Ion, Nan Wei, Reiko Tojo, Maria Abi Raad, Drew A. Hudson, Vaishakh Keshava, Shubham Agrawal, Kevin Ramirez, Zhichun Wu, Hoang Nguyen, Ji Liu, Madhavi Sewak, Bryce Petrini, DongHyun Choi, Ivan Philips, Ziyue Wang, Ioana Bica, Ankush Garg, Jarek Wilkiewicz, Priyanka Agrawal, Xiaowei Li, Danhao Guo, Emily Xue, Naseer Shaik, Andrew Leach, Sadh MNM Khan, Julia Wiesinger, Sammy Jerome, Abhishek Chakladar, Alek Wenjiao Wang, Tina Ornduff, Folake Abu, Alireza Ghaffarkhah, Marcus Wainwright, Mario Cortes, Frederick Liu, Joshua Maynez, Andreas Terzis, Pouya Samangouei, Riham Mansour, Tomasz Kępa, François-Xavier Aubet, Anton Algymr, Dan Banica, Agoston Weisz, Andras Orban, Alexandre Senges, Ewa Andrejczuk, Mark Geller, Niccolo Dal Santo, Valentin Anklin, Majd Al Merey, Martin Baeuml, Trevor Strohman, Junwen Bai, Slav Petrov, Yonghui Wu, Demis Hassabis, Koray Kavukcuoglu, Jeffrey Dean, Oriol Vinyals

In this report, we introduce the Gemini 1. 5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio.

1 Image, 2*2 Stitching Code Generation +6

A Survey of Graph Neural Networks in Real world: Imbalance, Noise, Privacy and OOD Challenges

no code implementations7 Mar 2024 Wei Ju, Siyu Yi, Yifan Wang, Zhiping Xiao, Zhengyang Mao, Hourun Li, Yiyang Gu, Yifang Qin, Nan Yin, Senzhang Wang, Xinwang Liu, Xiao Luo, Philip S. Yu, Ming Zhang

To tackle these issues, substantial efforts have been devoted to improving the performance of GNN models in practical real-world scenarios, as well as enhancing their reliability and robustness.

Fraud Detection

ESM All-Atom: Multi-scale Protein Language Model for Unified Molecular Modeling

1 code implementation5 Mar 2024 Kangjie Zheng, Siyu Long, Tianyu Lu, Junwei Yang, Xinyu Dai, Ming Zhang, Zaiqing Nie, Wei-Ying Ma, Hao Zhou

In this paper, we propose ESM-AA (ESM All-Atom), a novel approach that enables atom-scale and residue-scale unified molecular modeling.

Protein Language Model

COOL: A Conjoint Perspective on Spatio-Temporal Graph Neural Network for Traffic Forecasting

no code implementations2 Mar 2024 Wei Ju, Yusheng Zhao, Yifang Qin, Siyu Yi, Jingyang Yuan, Zhiping Xiao, Xiao Luo, Xiting Yan, Ming Zhang

Toward this end, this paper proposes Conjoint Spatio-Temporal graph neural network (abbreviated as COOL), which models heterogeneous graphs from prior and posterior information to conjointly capture high-order spatio-temporal relationships.

Decoder Diversity +1

Measuring Vision-Language STEM Skills of Neural Models

1 code implementation27 Feb 2024 Jianhao Shen, Ye Yuan, Srbuhi Mirzoyan, Ming Zhang, Chenguang Wang

Compared to existing datasets that often focus on examining expert-level ability, our dataset includes fundamental skills and questions designed based on the K-12 curriculum.

Multimodal Reasoning

CURSOR: Scalable Mixed-Order Hypergraph Matching with CUR Decomposition

no code implementations CVPR 2024 Qixuan Zheng, Ming Zhang, Hong Yan

To achieve greater accuracy, hypergraph matching algorithms require exponential increases in computational resources.

Graph Matching Hypergraph Matching +1

RJUA-MedDQA: A Multimodal Benchmark for Medical Document Question Answering and Clinical Reasoning

no code implementations19 Feb 2024 Congyun Jin, Ming Zhang, Xiaowei Ma, Li Yujiao, Yingbo Wang, Yabo Jia, Yuliang Du, Tao Sun, Haowen Wang, Cong Fan, Jinjie Gu, Chenfei Chi, Xiangguo Lv, Fangzhou Li, Wei Xue, Yiran Huang

Recent advancements in Large Language Models (LLMs) and Large Multi-modal Models (LMMs) have shown potential in various medical applications, such as Intelligent Medical Diagnosis.

document understanding Medical Diagnosis +1

A Survey of Data-Efficient Graph Learning

no code implementations1 Feb 2024 Wei Ju, Siyu Yi, Yifan Wang, Qingqing Long, Junyu Luo, Zhiping Xiao, Ming Zhang

Graph-structured data, prevalent in domains ranging from social networks to biochemical analysis, serve as the foundation for diverse real-world systems.

Graph Learning

GPS: Graph Contrastive Learning via Multi-scale Augmented Views from Adversarial Pooling

no code implementations29 Jan 2024 Wei Ju, Yiyang Gu, Zhengyang Mao, Ziyue Qiao, Yifang Qin, Xiao Luo, Hui Xiong, Ming Zhang

Self-supervised graph representation learning has recently shown considerable promise in a range of fields, including bioinformatics and social networks.

Adversarial Robustness Contrastive Learning +3

PolyCF: Towards the Optimal Spectral Graph Filters for Collaborative Filtering

no code implementations23 Jan 2024 Yifang Qin, Wei Ju, Xiao Luo, Yiyang Gu, Zhiping Xiao, Ming Zhang

Collaborative Filtering (CF) is a pivotal research area in recommender systems that capitalizes on collaborative similarities between users and items to provide personalized recommendations.

Collaborative Filtering Recommendation Systems

Preparing Lessons for Progressive Training on Language Models

1 code implementation17 Jan 2024 Yu Pan, Ye Yuan, Yichun Yin, Jiaxin Shi, Zenglin Xu, Ming Zhang, Lifeng Shang, Xin Jiang, Qun Liu

The rapid progress of Transformers in artificial intelligence has come at the cost of increased resource consumption and greenhouse gas emissions due to growing model sizes.

Reframing Tax Law Entailment as Analogical Reasoning

no code implementations12 Jan 2024 Xinrui Zou, Ming Zhang, Nathaniel Weir, Benjamin Van Durme, Nils Holzenberger

We re-frame statutory reasoning as an analogy task, where each instance of the analogy task involves a combination of two instances of statutory reasoning.

Retrieval

A Survey on Graph Neural Networks in Intelligent Transportation Systems

no code implementations1 Jan 2024 Hourun Li, Yusheng Zhao, Zhengyang Mao, Yifang Qin, Zhiping Xiao, Jiaqi Feng, Yiyang Gu, Wei Ju, Xiao Luo, Ming Zhang

However, most of the research in this area is still concentrated on traffic forecasting, while other ITS domains, such as autonomous vehicles and urban planning, still require more attention.

Autonomous Vehicles

RJUA-QA: A Comprehensive QA Dataset for Urology

1 code implementation15 Dec 2023 Shiwei Lyu, Chenfei Chi, Hongbo Cai, Lei Shi, Xiaoyan Yang, Lei Liu, Xiang Chen, Deng Zhao, Zhiqiang Zhang, Xianguo Lyu, Ming Zhang, Fangzhou Li, Xiaowei Ma, Yue Shen, Jinjie Gu, Wei Xue, Yiran Huang

We introduce RJUA-QA, a novel medical dataset for question answering (QA) and reasoning with clinical evidence, contributing to bridge the gap between general large language models (LLMs) and medical-specific LLM applications.

Question Answering

ALEX: Towards Effective Graph Transfer Learning with Noisy Labels

no code implementations26 Sep 2023 Jingyang Yuan, Xiao Luo, Yifang Qin, Zhengyang Mao, Wei Ju, Ming Zhang

Nevertheless, the majority of GNN-based approaches have been examined using well-annotated benchmark datasets, leading to suboptimal performance in real-world graph learning scenarios.

Contrastive Learning Graph Learning +2

Dynamic Hypergraph Structure Learning for Traffic Flow Forecasting

no code implementations21 Sep 2023 Yusheng Zhao, Xiao Luo, Wei Ju, Chong Chen, Xian-Sheng Hua, Ming Zhang

This paper studies the problem of traffic flow forecasting, which aims to predict future traffic conditions on the basis of road networks and traffic conditions in the past.

Redundancy-Free Self-Supervised Relational Learning for Graph Clustering

1 code implementation9 Sep 2023 Si-Yu Yi, Wei Ju, Yifang Qin, Xiao Luo, Luchen Liu, Yong-Dao Zhou, Ming Zhang

Graph clustering, which learns the node representations for effective cluster assignments, is a fundamental yet challenging task in data analysis and has received considerable attention accompanied by graph neural networks in recent years.

Attribute Clustering +4

FIMO: A Challenge Formal Dataset for Automated Theorem Proving

1 code implementation8 Sep 2023 Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju, Chuanyang Zheng, Yichun Yin, Lin Li, Ming Zhang, Qun Liu

We present FIMO, an innovative dataset comprising formal mathematical problem statements sourced from the International Mathematical Olympiad (IMO) Shortlisted Problems.

Automated Theorem Proving

Towards Long-Tailed Recognition for Graph Classification via Collaborative Experts

no code implementations31 Aug 2023 Siyu Yi, Zhengyang Mao, Wei Ju, Yongdao Zhou, Luchen Liu, Xiao Luo, Ming Zhang

Graph classification, aiming at learning the graph-level representations for effective class assignments, has received outstanding achievements, which heavily relies on high-quality datasets that have balanced class distribution.

Contrastive Learning Graph Classification +2

RAHNet: Retrieval Augmented Hybrid Network for Long-tailed Graph Classification

no code implementations4 Aug 2023 Zhengyang Mao, Wei Ju, Yifang Qin, Xiao Luo, Ming Zhang

Recent approaches mainly focus on re-balancing different classes during model training, which fails to explicitly introduce new knowledge and sacrifices the performance of the head classes.

Graph Classification Retrieval

Learning on Graphs under Label Noise

no code implementations14 Jun 2023 Jingyang Yuan, Xiao Luo, Yifang Qin, Yusheng Zhao, Wei Ju, Ming Zhang

Since this regularization term cannot utilize label information, it can enhance the robustness of node representations to label noise.

Anomaly Detection Contrastive Learning +3

Towards Semi-supervised Universal Graph Classification

no code implementations31 May 2023 Xiao Luo, Yusheng Zhao, Yifang Qin, Wei Ju, Ming Zhang

To tackle class shifts, we estimate the certainty of unlabeled graphs using multiple subgraphs, which facilities the discovery of unlabeled data from unknown categories.

Graph Classification Graph Neural Network

MolXPT: Wrapping Molecules with Text for Generative Pre-training

no code implementations18 May 2023 Zequn Liu, Wei zhang, Yingce Xia, Lijun Wu, Shufang Xie, Tao Qin, Ming Zhang, Tie-Yan Liu

Considering that text is the most important record for scientific discovery, in this paper, we propose MolXPT, a unified language model of text and molecules pre-trained on SMILES (a sequence representation of molecules) wrapped by text.

Language Modelling Molecular Property Prediction +4

TGNN: A Joint Semi-supervised Framework for Graph-level Classification

no code implementations23 Apr 2023 Wei Ju, Xiao Luo, Meng Qu, Yifan Wang, Chong Chen, Minghua Deng, Xian-Sheng Hua, Ming Zhang

The two twin modules collaborate with each other by exchanging instance similarity knowledge to fully explore the structure information of both labeled and unlabeled data.

Graph Classification Graph Neural Network

A Diffusion model for POI recommendation

1 code implementation14 Apr 2023 Yifang Qin, Hongjun Wu, Wei Ju, Xiao Luo, Ming Zhang

In this paper, we propose Diff-POI: a Diffusion-based model that samples the user's spatial preference for the next POI recommendation.

Learning Graph ODE for Continuous-Time Sequential Recommendation

no code implementations14 Apr 2023 Yifang Qin, Wei Ju, Hongjun Wu, Xiao Luo, Ming Zhang

Technically, GDERec is characterized by an autoregressive graph ordinary differential equation consisting of two components, which are parameterized by two tailored graph neural networks (GNNs) respectively to capture user preference from the perspective of hybrid dynamical systems.

Sequential Recommendation

A Comprehensive Survey on Deep Graph Representation Learning

no code implementations11 Apr 2023 Wei Ju, Zheng Fang, Yiyang Gu, Zequn Liu, Qingqing Long, Ziyue Qiao, Yifang Qin, Jianhao Shen, Fang Sun, Zhiping Xiao, Junwei Yang, Jingyang Yuan, Yusheng Zhao, Yifan Wang, Xiao Luo, Ming Zhang

Graph representation learning aims to effectively encode high-dimensional sparse graph-structured data into low-dimensional dense vectors, which is a fundamental task that has been widely studied in a range of fields, including machine learning and data mining.

Graph Embedding Graph Neural Network +1

Robust Dancer: Long-term 3D Dance Synthesis Using Unpaired Data

no code implementations29 Mar 2023 Bin Feng, Tenglong Ao, Zequn Liu, Wei Ju, Libin Liu, Ming Zhang

How to automatically synthesize natural-looking dance movements based on a piece of music is an incrementally popular yet challenging task.

Disentanglement

GraphVF: Controllable Protein-Specific 3D Molecule Generation with Variational Flow

1 code implementation23 Feb 2023 Fang Sun, Zhihao Zhan, Hongyu Guo, Ming Zhang, Jian Tang

In particular, GraphVF represents the first controllable geometry-aware, protein-specific molecule generation method, which can generate binding 3D molecules with tailored sub-structures and physio-chemical properties.

3D geometry 3D Molecule Generation +1

2D Human Pose Estimation with Explicit Anatomical Keypoints Structure Constraints

no code implementations5 Dec 2022 Zhangjian Ji, Zilong Wang, Ming Zhang, Yapeng Chen, Yuhua Qian

Recently, human pose estimation mainly focuses on how to design a more effective and better deep network structure as human features extractor, and most designed feature extraction networks only introduce the position of each anatomical keypoint to guide their training process.

2D Human Pose Estimation Pose Estimation

TIER-A: Denoising Learning Framework for Information Extraction

no code implementations13 Nov 2022 Yongkang Li, Ming Zhang

Our framework consists of several neural models with identical structures.

Denoising

GLCC: A General Framework for Graph-Level Clustering

no code implementations21 Oct 2022 Wei Ju, Yiyang Gu, Binqi Chen, Gongbo Sun, Yifang Qin, Xingyuming Liu, Xiao Luo, Ming Zhang

In this paper, we propose a general graph-level clustering framework named Graph-Level Contrastive Clustering (GLCC) given multiple graphs.

Clustering Contrastive Learning +2

Kernel-based Substructure Exploration for Next POI Recommendation

1 code implementation8 Oct 2022 Wei Ju, Yifang Qin, Ziyue Qiao, Xiao Luo, Yifan Wang, Yanjie Fu, Ming Zhang

To tackle the above issues, we propose a Kernel-Based Graph Neural Network (KBGNN) for next POI recommendation, which combines the characteristics of both geographical and sequential influences in a collaborative way.

Graph Neural Network

Focus-Driven Contrastive Learniang for Medical Question Summarization

1 code implementation1 Sep 2022 Ming Zhang, Shuai Dou, Ziyang Wang, Yunfang Wu

Automatic medical question summarization can significantly help the system to understand consumer health questions and retrieve correct answers.

Contrastive Learning Decoder +1

Taxonomy and evolution predicting using deep learning in images

1 code implementation28 Jun 2022 Jiewen Xiao, Wenbin Liao, Ming Zhang, Jing Wang, Jianxin Wang, Yihua Yang

Molecular and morphological characters, as important parts of biological taxonomy, are contradictory but need to be integrated.

Fine-Grained Image Recognition Zero-Shot Learning

A*Net: A Scalable Path-based Reasoning Approach for Knowledge Graphs

2 code implementations NeurIPS 2023 Zhaocheng Zhu, Xinyu Yuan, Mikhail Galkin, Sophie Xhonneux, Ming Zhang, Maxime Gazeau, Jian Tang

Experiments on both transductive and inductive knowledge graph reasoning benchmarks show that A*Net achieves competitive performance with existing state-of-the-art path-based methods, while merely visiting 10% nodes and 10% edges at each iteration.

Knowledge Graphs

KGNN: Harnessing Kernel-based Networks for Semi-supervised Graph Classification

no code implementations21 May 2022 Wei Ju, Junwei Yang, Meng Qu, Weiping Song, Jianhao Shen, Ming Zhang

This problem is typically solved by using graph neural networks (GNNs), which yet rely on a large number of labeled graphs for training and are unable to leverage unlabeled graphs.

Graph Classification Graph Neural Network

End-to-End Rubbing Restoration Using Generative Adversarial Networks

1 code implementation8 May 2022 Gongbo Sun, Zijie Zheng, Ming Zhang

Specifically, we collect characters from the Zhang Menglong Bei and build up the first rubbing restoration dataset.

Generative Adversarial Network

A Probabilistic Model-Based Robust Waveform Design for MIMO Radar Detection

no code implementations9 Apr 2022 Xuyang Wang, Bo Tang, Ming Zhang

This paper addresses robust waveform design for multiple-input-multiple-output (MIMO) radar detection.

Orthonormal Product Quantization Network for Scalable Face Image Retrieval

1 code implementation1 Jul 2021 Ming Zhang, Xuefei Zhe, Hong Yan

Experiments are conducted on four commonly-used face datasets under both seen and unseen identities retrieval settings.

Deep Hashing Face Image Retrieval +2

DisenHAN: Disentangled Heterogeneous Graph Attention Network for Recommendation

1 code implementation21 Jun 2021 Yifan Wang, Suyao Tang, Yuntong Lei, Weiping Song, Sheng Wang, Ming Zhang

In this paper, we propose a novel disentangled heterogeneous graph attention network DisenHAN for top-$N$ recommendation, which learns disentangled user/item representations from different aspects in a heterogeneous information network.

Collaborative Filtering Graph Attention +1

Partial Feature Selection and Alignment for Multi-Source Domain Adaptation

no code implementations CVPR 2021 Yangye Fu, Ming Zhang, Xing Xu, Zuo Cao, Chao Ma, Yanli Ji, Kai Zuo, Huimin Lu

By assuming that the source and target domains share consistent key feature representations and identical label space, existing studies on MSDA typically utilize the entire union set of features from both the source and target domains to obtain the feature map and align the map for each category and domain.

feature selection Partial Domain Adaptation

RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union

no code implementations CVPR 2021 Zhidong Liang, Zehan Zhang, Ming Zhang, Xian Zhao, ShiLiang Pu

Benefiting from the dense representation of the range image, RangeIoUDet is entirely constructed based on 2D convolution, making it possible to have a fast inference speed.

3D Object Detection Autonomous Driving +2

Criterion-based Heterogeneous Collaborative Filtering for Multi-behavior Implicit Recommendation

1 code implementation25 May 2021 Xiao Luo, Daqing Wu, Yiyang Gu, Chong Chen, Luchen Liu, Jinwen Ma, Ming Zhang, Minghua Deng, Jianqiang Huang, Xian-Sheng Hua

Besides, CHCF integrates criterion learning and user preference learning into a unified framework, which can be trained jointly for the interaction prediction of the target behavior.

Collaborative Filtering Metric Learning +1

FNAS: Uncertainty-Aware Fast Neural Architecture Search

no code implementations25 May 2021 Jihao Liu, Ming Zhang, Yangting Sun, Boxiao Liu, Guanglu Song, Yu Liu, Hongsheng Li

Further, an architecture knowledge pool together with a block similarity function is proposed to utilize parameter knowledge and reduces the searching time by 2 times.

Fairness Neural Architecture Search +1

IMU Data Processing For Inertial Aided Navigation: A Recurrent Neural Network Based Approach

no code implementations26 Mar 2021 Ming Zhang, Mingming Zhang, Yiming Chen, Mingyang Li

In this work, we propose a novel method for performing inertial aided navigation, by using deep neural networks (DNNs).

Sensor Fusion

Improved Deep Classwise Hashing With Centers Similarity Learning for Image Retrieval

no code implementations17 Mar 2021 Ming Zhang, Hong Yan

Recently, deep classwise hashing introduced a classwise loss supervised by class labels information alternatively; however, we find it still has its drawback.

Image Retrieval Retrieval

Topologically protected valley-dependent quantum photonic circuits

no code implementations11 Mar 2021 Yang Chen, Xin-Tao He, Yu-Jie Cheng, Hao-Yang Qiu, Lan-Tian Feng, Ming Zhang, Dao-Xin Dai, Guang-Can Guo, Jian-Wen Dong, Xi-Feng Ren

Topological photonics has been introduced as a powerful platform for integrated optics, since it can deal with robust light transport, and be further extended to the quantum world.

Quantum Physics Optics

Time-dependent Clearance of Cyclosporine in Adult Renal Transplant Recipients: A Population Pharmacokinetic Perspective

no code implementations2 Mar 2021 Junjun Mao, Xiaoyan Qiu, Weiwei Qin, Luyang Xu, Ming Zhang, Mingkang Zhong

The CL/F of the non-CGC haplotype carrier was 14. 4% lower than that of the CGC haplotype carrier at 3 months post operation.

$P-V$ criticality and Joule-Thomson Expansion of Hayward-AdS black holes in 4D Einstein-Gauss-Bonnet gravity

no code implementations8 Feb 2021 Ming Zhang, Chao-Ming Zhang, De-Cheng Zou, Rui-Hong Yue

In this paper, the $P-V$ criticality and Joule-Thomson Expansion of Hayward-AdS black holes in 4D Einstein-Gauss-Bonnet gravity are studied in the extended phase space.

Action Detection High Energy Physics - Theory

MoDL-QSM: Model-based Deep Learning for Quantitative Susceptibility Mapping

1 code implementation21 Jan 2021 Ruimin Feng, Jiayi Zhao, He Wang, Baofeng Yang, Jie Feng, Yuting Shi, Ming Zhang, Chunlei Liu, Yuyao Zhang, Jie Zhuang, Hongjiang Wei

However, there exists a mismatch between the observed phase and the theoretical forward phase estimated by the susceptibility label.

SSIM

Fast MNAS: Uncertainty-aware Neural Architecture Search with Lifelong Learning

no code implementations1 Jan 2021 Jihao Liu, Yangting Sun, Ming Zhang, Boxiao Liu, Yu Liu

Further, a life-long knowledge pool together with a block similarity function is proposed to utilize the lifelong parameter knowledge and reduces the searching time by 2 times.

Fairness Neural Architecture Search

Tomographic imaging of complete quantum state of matter by ultrafast diffraction

no code implementations22 Dec 2020 Ming Zhang, Shuqiao Zhang, Haitan Xu, Hankai Zhang, Xiangxu Mu, R. J. Dwayne Miller, Anatoly Ischenko, Oriol Vendrell, Zheng Li

With the ability to directly obtain the Wigner function and density matrix of photon states, quantum tomography (QT) has had a significant impact on quantum optics, quantum computing and quantum information.

Quantum Physics

Learning Hybrid Representations for Automatic 3D Vessel Centerline Extraction

no code implementations14 Dec 2020 Jiafa He, Chengwei Pan, Can Yang, Ming Zhang, Yang Wang, Xiaowei Zhou, Yizhou Yu

The main idea is to use CNNs to learn local appearances of vessels in image crops while using another point-cloud network to learn the global geometry of vessels in the entire image.

Representation Learning

$K$-theoretic quasimap wall-crossing

no code implementations2 Dec 2020 Ming Zhang, Yang Zhou

In this paper, we prove a K-theoretic wall-crossing formula for $\epsilon$-stable quasimaps for all GIT targets in all genera.

Algebraic Geometry Mathematical Physics Mathematical Physics 14N35

Multi-agent Trajectory Prediction with Fuzzy Query Attention

1 code implementation NeurIPS 2020 Nitin Kamra, Hao Zhu, Dweep Trivedi, Ming Zhang, Yan Liu

Trajectory prediction for scenes with multiple agents and entities is a challenging problem in numerous domains such as traffic prediction, pedestrian tracking and path planning.

Decision Making Traffic Prediction +1

Partial FC: Training 10 Million Identities on a Single Machine

7 code implementations11 Oct 2020 Xiang An, Xuhan Zhu, Yang Xiao, Lan Wu, Ming Zhang, Yuan Gao, Bin Qin, Debing Zhang, Ying Fu

The experiment demonstrates no loss of accuracy when training with only 10\% randomly sampled classes for the softmax-based loss functions, compared with training with full classes using state-of-the-art models on mainstream benchmarks.

Face Identification Face Recognition +2

Rethinking the Extraction and Interaction of Multi-Scale Features for Vessel Segmentation

no code implementations9 Oct 2020 Yicheng Wu, Chengwei Pan, Shuqi Wang, Ming Zhang, Yong Xia, Yizhou Yu

Analyzing the morphological attributes of blood vessels plays a critical role in the computer-aided diagnosis of many cardiovascular and ophthalmologic diseases.

Decoder

MAFF-Net: Filter False Positive for 3D Vehicle Detection with Multi-modal Adaptive Feature Fusion

no code implementations23 Sep 2020 Zehan Zhang, Ming Zhang, Zhidong Liang, Xian Zhao, Ming Yang, Wenming Tan, ShiLiang Pu

Experimental results on the KITTI dataset demonstrate significant improvement in filtering false positive over the approach using only point cloud data.

Autonomous Driving

New gedanken experiment on higher-dimensional asymptotically AdS Reissner-Nordström black hole

no code implementations16 Sep 2020 Ming Zhang, Jie Jiang

Viewing the negative cosmological constant as a dynamical quantity derived from the matter field, we study the weak cosmic censorship conjecture for the higher-dimensional asymptotically AdS Reissner-Nordstr\"om black hole.

General Relativity and Quantum Cosmology High Energy Physics - Theory

Snowmass 2021 LoI: Determination of cosmic ray properties in the local interstellar medium with all-sky anisotropy observations

no code implementations10 Sep 2020 Paolo Desiati, Juan Carlos Díaz Vélez, Nikolai Pogorelov, Ming Zhang

Propagation of Galactic cosmic rays (CR) in the interstellar medium (ISM) is among the unsolved problems in particle astrophysics.

High Energy Astrophysical Phenomena

Augmented Bi-path Network for Few-shot Learning

no code implementations15 Jul 2020 Baoming Yan, Chen Zhou, Bo Zhao, Kan Guo, Jiang Yang, Xiaobo Li, Ming Zhang, Yizhou Wang

Finally, the model learns to compare global and local features separately, i. e., in two paths, before merging the similarities.

Few-Shot Learning

EasyQuant: Post-training Quantization via Scale Optimization

1 code implementation30 Jun 2020 Di Wu, Qi Tang, Yongle Zhao, Ming Zhang, Ying Fu, Debing Zhang

The 8 bits quantization has been widely applied to accelerate network inference in various deep learning applications.

Quantization

Wasserstein Distance guided Adversarial Imitation Learning with Reward Shape Exploration

1 code implementation5 Jun 2020 Ming Zhang, Yawei Wang, Xiaoteng Ma, Li Xia, Jun Yang, Zhiheng Li, Xiu Li

The generative adversarial imitation learning (GAIL) has provided an adversarial learning framework for imitating expert policy from demonstrations in high-dimensional continuous tasks.

Continuous Control Imitation Learning

When does MAML Work the Best? An Empirical Study on Model-Agnostic Meta-Learning in NLP Applications

no code implementations24 May 2020 Zequn Liu, Ruiyi Zhang, Yiping Song, Wei Ju, Ming Zhang

Model-Agnostic Meta-Learning (MAML), a model-agnostic meta-learning method, is successfully employed in NLP applications including few-shot text classification and multi-domain low-resource language generation.

Few-Shot Text Classification Language Modelling +3

Learning to Answer Ambiguous Questions with Knowledge Graph

no code implementations25 Dec 2019 Yikai Zhu, Jianhao Shen, Ming Zhang

In the task of factoid question answering over knowledge base, many questions have more than one plausible interpretation.

Question Answering

Predictive Multi-level Patient Representations from Electronic Health Records

no code implementations12 Nov 2019 Zichang Wang, Haoran Li, Lu-chen Liu, Haoxian Wu, Ming Zhang

Most related studies transform EHR data of a patient into a sequence of clinical events in temporal order and then use sequential models to learn patient representations for outcome prediction.

PoD: Positional Dependency-Based Word Embedding for Aspect Term Extraction

no code implementations COLING 2020 Yichun Yin, Chenguang Wang, Ming Zhang

Dependency context-based word embedding jointly learns the representations of word and dependency context, and has been proved effective in aspect term extraction.

Aspect Term Extraction and Sentiment Classification POS +2

Learning to Customize Model Structures for Few-shot Dialogue Generation Tasks

1 code implementation ACL 2020 Yiping Song, Zequn Liu, Wei Bi, Rui Yan, Ming Zhang

Training the generative models with minimal corpus is one of the critical challenges for building open-domain dialogue systems.

Dialogue Generation Diversity +2

Early Prediction of Sepsis From Clinical Datavia Heterogeneous Event Aggregation

no code implementations14 Oct 2019 Lu-chen Liu, Haoxian Wu, Zichang Wang, Zequn Liu, Ming Zhang

Rather than directly applying the LSTM model to the event sequences, our proposed model firstly aggregates heterogeneous clinical events in a short period and then captures temporal interactions of the aggregated representations with LSTM.

NoiGAN: NOISE AWARE KNOWLEDGE GRAPH EMBEDDING WITH GAN

no code implementations25 Sep 2019 Kewei Cheng, Yikai Zhu, Ming Zhang, Yizhou Sun

Knowledge graph has gained increasing attention in recent years for its successful applications of numerous tasks.

Knowledge Graph Embedding

Neural Correction Model for Open-Domain Named Entity Recognition

1 code implementation13 Sep 2019 Mengdi Zhu, Zheye Deng, Wenhan Xiong, Mo Yu, Ming Zhang, William Yang Wang

In this work, to address the low precision and recall problems, we first utilize DBpedia as the source of distant supervision to annotate abstracts from Wikipedia and design a neural correction model trained with a human-annotated NER dataset, DocRED, to correct the false entity labels.

Multi-Task Learning named-entity-recognition +4

Ekar: An Explainable Method for Knowledge Aware Recommendation

2 code implementations22 Jun 2019 Weiping Song, Zhijian Duan, Ziqing Yang, Hao Zhu, Ming Zhang, Jian Tang

Recently, a variety of methods have been developed for this problem, which generally try to learn effective representations of users and items and then match items to users according to their representations.

Knowledge-Aware Recommendation Knowledge Graphs +1

Learning Hierarchical Representations of Electronic Health Records for Clinical Outcome Prediction

no code implementations20 Mar 2019 Lu-chen Liu, Haoran Li, Zhiting Hu, Haoran Shi, Zichang Wang, Jian Tang, Ming Zhang

Our model learns hierarchical representationsof event sequences, to adaptively distinguish between short-range and long-range events, and accurately capture coretemporal dependencies.

Session-based Social Recommendation via Dynamic Graph Attention Networks

2 code implementations25 Feb 2019 Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming Zhang, Jian Tang

However, recommendation in online communities is a challenging problem: 1) users' interests are dynamic, and 2) users are influenced by their friends.

 Ranked #1 on Recommendation Systems on Douban (NDCG metric)

Graph Attention Recommendation Systems