Search Results for author: Minghui Du

Found 3 papers, 1 papers with code

Rapid Parameter Estimation for Extreme Mass Ratio Inspirals Using Machine Learning

no code implementations12 Sep 2024 Bo Liang, Hong Guo, Tianyu Zhao, He Wang, Herik Evangelinelis, Yuxiang Xu, Chang Liu, Manjia Liang, Xiaotong Wei, Yong Yuan, Peng Xu, Minghui Du, Wei-Liang Qian, Ziren Luo

Extreme-mass-ratio inspiral (EMRI) signals pose significant challenges in gravitational wave (GW) astronomy owing to their low-frequency nature and highly complex waveforms, which occupy a high-dimensional parameter space with numerous variables.

Astronomy Computational Efficiency

Attention based Broadly Self-guided Network for Low light Image Enhancement

1 code implementation12 Dec 2021 Zilong Chen, Yaling Liang, Minghui Du

During the past years, deep convolutional neural networks have achieved impressive success in low-light Image Enhancement. Existing deep learning methods mostly enhance the ability of feature extraction by stacking network structures and deepening the depth of the network. which causes more runtime cost on single image. In order to reduce inference time while fully extracting local features and global features. Inspired by SGN, we propose a Attention based Broadly self-guided network (ABSGN) for real world low-light image Enhancement. such a broadly strategy is able to handle the noise at different exposures. The proposed network is validated by many mainstream benchmark. Additional experimental results show that the proposed network outperforms most of state-of-the-art low-light image Enhancement solutions.

Low-Light Image Enhancement

How will our knowledge of short gamma-ray bursts affect the distance measurement of binary neutron stars?

no code implementations29 Jan 2021 Minghui Du, Lixin Xu

Besides, adopting tighter prior and employing multiple detectors both decrease the error of luminosity distance.

Cosmology and Nongalactic Astrophysics

Cannot find the paper you are looking for? You can Submit a new open access paper.