Search Results for author: Mingxuan Gu

Found 19 papers, 8 papers with code

On the Influence of Smoothness Constraints in Computed Tomography Motion Compensation

no code implementations29 May 2024 Mareike Thies, Fabian Wagner, Noah Maul, Siyuan Mei, Mingxuan Gu, Laura Pfaff, Nastassia Vysotskaya, Haijun Yu, Andreas Maier

This study analyzes the influence of a spline-based motion model within an existing rigid motion compensation algorithm for cone-beam CT on the recoverable motion frequencies.

Anatomy Computed Tomography (CT) +1

Reference-Free Multi-Modality Volume Registration of X-Ray Microscopy and Light-Sheet Fluorescence Microscopy

no code implementations23 Apr 2024 Siyuan Mei, Fuxin Fan, Mareike Thies, Mingxuan Gu, Fabian Wagner, Oliver Aust, Ina Erceg, Zeynab Mirzaei, Georgiana Neag, Yipeng Sun, Yixing Huang, Andreas Maier

Recently, X-ray microscopy (XRM) and light-sheet fluorescence microscopy (LSFM) have emerged as two pivotal imaging tools in preclinical research on bone remodeling diseases, offering micrometer-level resolution.

Data-Driven Filter Design in FBP: Transforming CT Reconstruction with Trainable Fourier Series

1 code implementation29 Jan 2024 Yipeng Sun, Linda-Sophie Schneider, Fuxin Fan, Mareike Thies, Mingxuan Gu, Siyuan Mei, Yuzhong Zhou, Siming Bayer, Andreas Maier

In this study, we introduce a Fourier series-based trainable filter for computed tomography (CT) reconstruction within the filtered backprojection (FBP) framework.

Computational Efficiency Computed Tomography (CT) +1

Exploring Epipolar Consistency Conditions for Rigid Motion Compensation in In-vivo X-ray Microscopy

no code implementations1 Mar 2023 Mareike Thies, Fabian Wagner, Mingxuan Gu, Siyuan Mei, Yixing Huang, Sabrina Pechmann, Oliver Aust, Daniela Weidner, Georgiana Neag, Stefan Uderhardt, Georg Schett, Silke Christiansen, Andreas Maier

Intravital X-ray microscopy (XRM) in preclinical mouse models is of vital importance for the identification of microscopic structural pathological changes in the bone which are characteristic of osteoporosis.

Motion Compensation

On the Benefit of Dual-domain Denoising in a Self-supervised Low-dose CT Setting

1 code implementation2 Nov 2022 Fabian Wagner, Mareike Thies, Laura Pfaff, Oliver Aust, Sabrina Pechmann, Daniela Weidner, Noah Maul, Maximilian Rohleder, Mingxuan Gu, Jonas Utz, Felix Denzinger, Andreas Maier

In this work, we present an end-to-end trainable CT reconstruction pipeline that contains denoising operators in both the projection and the image domain and that are optimized simultaneously without requiring ground-truth high-dose CT data.

Computed Tomography (CT) CT Reconstruction +2

Trainable Joint Bilateral Filters for Enhanced Prediction Stability in Low-dose CT

no code implementations15 Jul 2022 Fabian Wagner, Mareike Thies, Felix Denzinger, Mingxuan Gu, Mayank Patwari, Stefan Ploner, Noah Maul, Laura Pfaff, Yixing Huang, Andreas Maier

Low-dose computed tomography (CT) denoising algorithms aim to enable reduced patient dose in routine CT acquisitions while maintaining high image quality.

Computed Tomography (CT) Denoising

ConFUDA: Contrastive Fewshot Unsupervised Domain Adaptation for Medical Image Segmentation

no code implementations8 Jun 2022 Mingxuan Gu, Sulaiman Vesal, Mareike Thies, Zhaoya Pan, Fabian Wagner, Mirabela Rusu, Andreas Maier, Ronak Kosti

Then, to align the source and target features and tackle the memory issue of the traditional contrastive loss, we propose the centroid-based contrastive learning (CCL) and a centroid norm regularizer (CNR) to optimize the contrastive pairs in both direction and magnitude.

Contrastive Learning Image Segmentation +4

Ultra Low-Parameter Denoising: Trainable Bilateral Filter Layers in Computed Tomography

1 code implementation25 Jan 2022 Fabian Wagner, Mareike Thies, Mingxuan Gu, Yixing Huang, Sabrina Pechmann, Mayank Patwari, Stefan Ploner, Oliver Aust, Stefan Uderhardt, Georg Schett, Silke Christiansen, Andreas Maier

Due to the extremely low number of trainable parameters with well-defined effect, prediction reliance and data integrity is guaranteed at any time in the proposed pipelines, in contrast to most other deep learning-based denoising architectures.

Denoising SSIM

Learned Cone-Beam CT Reconstruction Using Neural Ordinary Differential Equations

no code implementations19 Jan 2022 Mareike Thies, Fabian Wagner, Mingxuan Gu, Lukas Folle, Lina Felsner, Andreas Maier

Learned iterative reconstruction algorithms for inverse problems offer the flexibility to combine analytical knowledge about the problem with modules learned from data.

CT Reconstruction Numerical Integration

Spatio-temporal Multi-task Learning for Cardiac MRI Left Ventricle Quantification

1 code implementation24 Dec 2020 Sulaiman Vesal, Mingxuan Gu, Andreas Maier, Nishant Ravikumar

In this paper, we propose a spatio-temporal multi-task learning approach to obtain a complete set of measurements quantifying cardiac LV morphology, regional-wall thickness (RWT), and additionally detecting the cardiac phase cycle (systole and diastole) for a given 3D Cine-magnetic resonance (MR) image sequence.

Model Optimization Multi-Task Learning

Cannot find the paper you are looking for? You can Submit a new open access paper.