no code implementations • 9 Jan 2025 • Mingyang Chen, Luhong Jin, Xuwei Xuan, Defu Yang, Yun Cheng, Ju Zhang
Live-cell imaging of multiple subcellular structures is essential for understanding subcellular dynamics.
1 code implementation • 9 Dec 2024 • Renlong Wu, Zhilu Zhang, Mingyang Chen, Xiaopeng Fan, Zifei Yan, WangMeng Zuo
Recent 4D reconstruction methods have yielded impressive results but rely on sharp videos as supervision.
1 code implementation • 11 Nov 2024 • Zhiqiang Liu, Mingyang Chen, Yin Hua, Zhuo Chen, Ziqi Liu, Lei Liang, Huajun Chen, Wen Zhang
Experimental results across 7 datasets from 3 types of KGs demonstrate that our UniHR outperforms baselines designed for one specific kind of KG, indicating strong generalization capability of HiDR form and the effectiveness of HiSL module.
1 code implementation • 23 Oct 2024 • Shangshang Yang, Mingyang Chen, Ziwen Wang, Xiaoshan Yu, Panpan Zhang, Haiping Ma, Xingyi Zhang
To tackle the issues, this paper suggests a meta multigraph-assisted disentangled graph learning framework for CD (DisenGCD), which learns three types of representations on three disentangled graphs: student-exercise-concept interaction, exercise-concept relation, and concept dependency graphs, respectively.
no code implementations • 19 Oct 2024 • MingAn Lin, Fan Yang, Yanjun Shen, Haoze Sun, Tianpeng Li, Chenzheng Zhu, Tao Zhang, Miao Zheng, Xu Li, Yijie Zhou, Mingyang Chen, Yanzhao Qin, Youquan Li, Hao Liang, Fei Li, Yadong Li, Mang Wang, Guosheng Dong, Kun Fang, Jianhua Xu, Bin Cui, Wentao Zhang, Zenan Zhou, WeiPeng Chen
Baichuan-Instruct is an internal model, while Qwen2-Nova-72B and Llama3-PBM-Nova-70B are instruct versions of the Qwen2-72B and Llama-3-70B base models, optimized through Baichuan Alignment.
1 code implementation • 16 Oct 2024 • Mingyang Chen, Haoze Sun, Tianpeng Li, Fan Yang, Hao Liang, Keer Lu, Bin Cui, Wentao Zhang, Zenan Zhou, WeiPeng Chen
While current research on function calling by LLMs primarily focuses on single-turn interactions, this paper addresses the overlooked necessity for LLMs to engage in multi-turn function calling--critical for handling compositional, real-world queries that require planning with functions but not only use functions.
no code implementations • 3 Jul 2024 • Yushan Zhu, Wen Zhang, Zhiqiang Liu, Mingyang Chen, Lei Liang, Huajun Chen
Knowledge Graph Embedding (KGE) is a common method for Knowledge Graphs (KGs) to serve various artificial intelligence tasks.
no code implementations • 3 Jul 2024 • Yushan Zhu, Wen Zhang, Yajing Xu, Zhen Yao, Mingyang Chen, Huajun Chen
In SF-GNN, we define two representations for each node, one is the node representation that represents the feature of the node itself, and the other is the message representation specifically for propagating messages to neighbor nodes.
1 code implementation • 20 Jun 2024 • Junjie Wang, Mingyang Chen, Binbin Hu, Dan Yang, Ziqi Liu, Yue Shen, Peng Wei, Zhiqiang Zhang, Jinjie Gu, Jun Zhou, Jeff Z. Pan, Wen Zhang, Huajun Chen
LLMs fine-tuned with this data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
1 code implementation • 14 Dec 2023 • Mingyang Chen, Bo Huang, Junda Lu, Bing Li, Yi Wang, Minhao Cheng, Wei Wang
This ensures the memory efficiency of our method and provides a flexible tradeoff between time and memory budgets, allowing us to distil ImageNet-1K using a minimum of only 6. 5GB of GPU memory.
1 code implementation • 15 Oct 2023 • Xiangnan Chen, Wen Zhang, Zhen Yao, Mingyang Chen, Siliang Tang
Most existing negative sampling methods assume that non-existent triples with high scores are high-quality negative triples.
1 code implementation • 15 Aug 2023 • Long Jin, Zhen Yao, Mingyang Chen, Huajun Chen, Wen Zhang
Though KGE models' capabilities are analyzed over different relational patterns in theory and a rough connection between better relational patterns modeling and better performance of KGC has been built, a comprehensive quantitative analysis on KGE models over relational patterns remains absent so it is uncertain how the theoretical support of KGE to a relational pattern contributes to the performance of triples associated to such a relational pattern.
1 code implementation • 22 May 2023 • Yuxin Jiang, Chunkit Chan, Mingyang Chen, Wei Wang
The practice of transferring knowledge from a sophisticated, proprietary large language model (LLM) to a compact, open-source LLM has garnered considerable attention.
1 code implementation • 28 Apr 2023 • Wen Zhang, Zhen Yao, Mingyang Chen, Zhiwei Huang, Huajun Chen
Since the dynamic characteristics of knowledge graphs, many inductive knowledge graph representation learning (KGRL) works have been proposed in recent years, focusing on enabling prediction over new entities.
1 code implementation • 23 Apr 2023 • Yichi Zhang, Mingyang Chen, Wen Zhang
Negative sampling (NS) is widely used in knowledge graph embedding (KGE), which aims to generate negative triples to make a positive-negative contrast during training.
1 code implementation • 3 Mar 2023 • Wen Zhang, Yushan Zhu, Mingyang Chen, Yuxia Geng, Yufeng Huang, Yajing Xu, Wenting Song, Huajun Chen
Through experiments, we justify that the pretrained KGTransformer could be used off the shelf as a general and effective KRF module across KG-related tasks.
no code implementations • 3 Feb 2023 • Mingyang Chen, Wen Zhang, Yuxia Geng, Zezhong Xu, Jeff Z. Pan, Huajun Chen
In this paper, we use a set of general terminologies to unify these methods and refer to them collectively as Knowledge Extrapolation.
1 code implementation • 3 Feb 2023 • Mingyang Chen, Wen Zhang, Zhen Yao, Yushan Zhu, Yang Gao, Jeff Z. Pan, Huajun Chen
In our proposed model, Entity-Agnostic Representation Learning (EARL), we only learn the embeddings for a small set of entities and refer to them as reserved entities.
1 code implementation • 3 Jan 2023 • Zhen Yao, Wen Zhang, Mingyang Chen, Yufeng Huang, Yi Yang, Huajun Chen
And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding.
1 code implementation • CVPR 2023 • Bo Huang, Mingyang Chen, Yi Wang, Junda Lu, Minhao Cheng, Wei Wang
Thus, recent studies concern about adversarial distillation (AD) that aims to inherit not only prediction accuracy but also adversarial robustness of a robust teacher model under the paradigm of robust optimization.
1 code implementation • 20 Oct 2022 • Zhuo Chen, Wen Zhang, Yufeng Huang, Mingyang Chen, Yuxia Geng, Hongtao Yu, Zhen Bi, Yichi Zhang, Zhen Yao, Wenting Song, Xinliang Wu, Yi Yang, Mingyi Chen, Zhaoyang Lian, YingYing Li, Lei Cheng, Huajun Chen
In this work, we share our experience on tele-knowledge pre-training for fault analysis, a crucial task in telecommunication applications that requires a wide range of knowledge normally found in both machine log data and product documents.
1 code implementation • 8 Oct 2022 • Yuxia Geng, Jiaoyan Chen, Jeff Z. Pan, Mingyang Chen, Song Jiang, Wen Zhang, Huajun Chen
Subgraph reasoning with message passing is a promising and popular solution.
1 code implementation • 10 May 2022 • Mingyang Chen, Wen Zhang, Zhen Yao, Xiangnan Chen, Mengxiao Ding, Fei Huang, Huajun Chen
We study the knowledge extrapolation problem to embed new components (i. e., entities and relations) that come with emerging knowledge graphs (KGs) in the federated setting.
1 code implementation • 25 Feb 2022 • Wen Zhang, Xiangnan Chen, Zhen Yao, Mingyang Chen, Yushan Zhu, Hongtao Yu, Yufeng Huang, Zezhong Xu, Yajing Xu, Ningyu Zhang, Zonggang Yuan, Feiyu Xiong, Huajun Chen
NeuralKG is an open-source Python-based library for diverse representation learning of knowledge graphs.
no code implementations • 16 Dec 2021 • Wen Zhang, Shumin Deng, Mingyang Chen, Liang Wang, Qiang Chen, Feiyu Xiong, Xiangwen Liu, Huajun Chen
We first identity three important desiderata for e-commerce KG systems: 1) attentive reasoning, reasoning over a few target relations of more concerns instead of all; 2) explanation, providing explanations for a prediction to help both users and business operators understand why the prediction is made; 3) transferable rules, generating reusable rules to accelerate the deployment of a KG to new systems.
1 code implementation • 27 Oct 2021 • Mingyang Chen, Wen Zhang, Yushan Zhu, Hongting Zhou, Zonggang Yuan, Changliang Xu, Huajun Chen
In this paper, to achieve inductive knowledge graph embedding, we propose a model MorsE, which does not learn embeddings for entities but learns transferable meta-knowledge that can be used to produce entity embeddings.
no code implementations • 21 Oct 2021 • Lingbing Guo, Zequn Sun, Mingyang Chen, Wei Hu, Qiang Zhang, Huajun Chen
Embedding-based entity alignment (EEA) has recently received great attention.
no code implementations • 29 Sep 2021 • Wen Zhang, Mingyang Chen, Zezhong Xu, Yushan Zhu, Huajun Chen
KGExplainer is a multi-hop reasoner learning latent rules for link prediction and is encouraged to behave similarly to KGEs during prediction through knowledge distillation.
no code implementations • 1 Jan 2021 • Lingbing Guo, Zequn Sun, Mingyang Chen, Wei Hu, Huajun Chen
In this paper, we define a typical paradigm abstracted from the existing methods, and analyze how the representation discrepancy between two potentially-aligned entities is implicitly bounded by a predefined margin in the scoring function for embedding learning.
2 code implementations • 24 Oct 2020 • Mingyang Chen, Wen Zhang, Zonggang Yuan, Yantao Jia, Huajun Chen
Knowledge graphs (KGs) consisting of triples are always incomplete, so it's important to do Knowledge Graph Completion (KGC) by predicting missing triples.
no code implementations • 13 Sep 2020 • Yushan Zhu, Wen Zhang, Mingyang Chen, Hui Chen, Xu Cheng, Wei zhang, Huajun Chen
In DualDE, we propose a soft label evaluation mechanism to adaptively assign different soft label and hard label weights to different triples, and a two-stage distillation approach to improve the student's acceptance of the teacher.
2 code implementations • CVPR 2020 • Yong-Lu Li, Liang Xu, Xinpeng Liu, Xijie Huang, Yue Xu, Shiyi Wang, Hao-Shu Fang, Ze Ma, Mingyang Chen, Cewu Lu
In light of this, we propose a new path: infer human part states first and then reason out the activities based on part-level semantics.
Ranked #3 on Human-Object Interaction Detection on HICO
1 code implementation • IJCNLP 2019 • Mingyang Chen, Wen Zhang, Wei zhang, Qiang Chen, Huajun Chen
Link prediction is an important way to complete knowledge graphs (KGs), while embedding-based methods, effective for link prediction in KGs, perform poorly on relations that only have a few associative triples.
4 code implementations • 13 Apr 2019 • Yong-Lu Li, Liang Xu, Xinpeng Liu, Xijie Huang, Yue Xu, Mingyang Chen, Ze Ma, Shiyi Wang, Hao-Shu Fang, Cewu Lu
To address these and promote the activity understanding, we build a large-scale Human Activity Knowledge Engine (HAKE) based on the human body part states.
Ranked #2 on Human-Object Interaction Detection on HICO (using extra training data)