no code implementations • 6 Jun 2021 • Teli Ma, Mingyuan Mao, Honghui Zheng, Peng Gao, Xiaodi Wang, Shumin Han, Errui Ding, Baochang Zhang, David Doermann
Object detection with Transformers (DETR) has achieved a competitive performance over traditional detectors, such as Faster R-CNN.
no code implementations • NeurIPS 2021 • Mingyuan Mao, Renrui Zhang, Honghui Zheng, Peng Gao, Teli Ma, Yan Peng, Errui Ding, Baochang Zhang, Shumin Han
Transformers with remarkable global representation capacities achieve competitive results for visual tasks, but fail to consider high-level local pattern information in input images.
no code implementations • 7 May 2021 • Mingyuan Mao, Baochang Zhang, David Doermann, Jie Guo, Shumin Han, Yuan Feng, Xiaodi Wang, Errui Ding
This leads to a new problem of confidence discrepancy for the detector ensembles.
1 code implementation • 28 Apr 2021 • Ying Xin, Guanzhong Wang, Mingyuan Mao, Yuan Feng, Qingqing Dang, Yanjun Ma, Errui Ding, Shumin Han
Therefore, a trade-off between effectiveness and efficiency is necessary in practical scenarios.
Ranked #1 on Object Detection on COCO test-dev (Hardware Burden metric)
1 code implementation • 16 Sep 2020 • Xuehui Yu, Zhenjun Han, Yuqi Gong, Nan Jiang, Jian Zhao, Qixiang Ye, Jie Chen, Yuan Feng, Bin Zhang, Xiaodi Wang, Ying Xin, Jingwei Liu, Mingyuan Mao, Sheng Xu, Baochang Zhang, Shumin Han, Cheng Gao, Wei Tang, Lizuo Jin, Mingbo Hong, Yuchao Yang, Shuiwang Li, Huan Luo, Qijun Zhao, Humphrey Shi
The 1st Tiny Object Detection (TOD) Challenge aims to encourage research in developing novel and accurate methods for tiny object detection in images which have wide views, with a current focus on tiny person detection.
1 code implementation • 23 Jun 2020 • Mingyuan Mao, Yuxin Tian, Baochang Zhang, Qixiang Ye, Wanquan Liu, Guodong Guo, David Doermann
In this paper, we propose a new feature optimization approach to enhance features and suppress background noise in both the training and inference stages.