no code implementations • 18 Jul 2024 • Fedor Borisyuk, Qingquan Song, Mingzhou Zhou, Ganesh Parameswaran, Madhu Arun, Siva Popuri, Tugrul Bingol, Zhuotao Pei, Kuang-Hsuan Lee, Lu Zheng, Qizhan Shao, Ali Naqvi, Sen Zhou, Aman Gupta
We envisage LiNR as a step towards integrating retrieval and ranking into a single GPU model, simplifying complex infrastructures and enabling end-to-end optimization of the entire differentiable infrastructure through gradient descent.
no code implementations • 10 Feb 2024 • Fedor Borisyuk, Mingzhou Zhou, Qingquan Song, Siyu Zhu, Birjodh Tiwana, Ganesh Parameswaran, Siddharth Dangi, Lars Hertel, Qiang Xiao, Xiaochen Hou, Yunbo Ouyang, Aman Gupta, Sheallika Singh, Dan Liu, Hailing Cheng, Lei Le, Jonathan Hung, Sathiya Keerthi, Ruoyan Wang, Fengyu Zhang, Mohit Kothari, Chen Zhu, Daqi Sun, Yun Dai, Xun Luan, Sirou Zhu, Zhiwei Wang, Neil Daftary, Qianqi Shen, Chengming Jiang, Haichao Wei, Maneesh Varshney, Amol Ghoting, Souvik Ghosh
We present LiRank, a large-scale ranking framework at LinkedIn that brings to production state-of-the-art modeling architectures and optimization methods.
no code implementations • 12 Aug 2021 • Aman Gupta, Rohan Ramanath, Jun Shi, Anika Ramachandran, Sirou Zhou, Mingzhou Zhou, S. Sathiya Keerthi
Over-parameterized deep networks trained using gradient-based optimizers are a popular choice for solving classification and ranking problems.