1 code implementation • 4 Dec 2024 • Namkyeong Lee, Yunhak Oh, Heewoong Noh, Gyoung S. Na, Minkai Xu, Hanchen Wang, Tianfan Fu, Chanyoung Park
Molecular Relational Learning (MRL) is a rapidly growing field that focuses on understanding the interaction dynamics between molecules, which is crucial for applications ranging from catalyst engineering to drug discovery.
1 code implementation • 29 Oct 2024 • Jiaqi Han, Mingjian Jiang, Yuxuan Song, Jure Leskovec, Stefano Ermon, Minkai Xu
Preference optimization has made significant progress recently, with numerous methods developed to align language models with human preferences.
no code implementations • 28 Oct 2024 • Minkai Xu, Tomas Geffner, Karsten Kreis, Weili Nie, Yilun Xu, Jure Leskovec, Stefano Ermon, Arash Vahdat
Unfortunately, these models still underperform the autoregressive counterparts, with the performance gap increasing when reducing the number of sampling steps.
1 code implementation • 27 Oct 2024 • Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, Jure Leskovec
In this paper, we introduce TabDiff, a joint diffusion framework that models all multi-modal distributions of tabular data in one model.
1 code implementation • 16 Oct 2024 • Jiaqi Han, Minkai Xu, Aaron Lou, Haotian Ye, Stefano Ermon
In this work, we propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories.
1 code implementation • 11 Oct 2024 • Ling Yang, Zhaochen Yu, Tianjun Zhang, Minkai Xu, Joseph E. Gonzalez, Bin Cui, Shuicheng Yan
Large language models (LLMs) like GPT-4, PaLM, and LLaMA have shown significant improvements in various reasoning tasks.
1 code implementation • 9 Oct 2024 • Bohan Zeng, Ling Yang, Siyu Li, Jiaming Liu, Zixiang Zhang, Juanxi Tian, Kaixin Zhu, Yongzhen Guo, Fu-Yun Wang, Minkai Xu, Stefano Ermon, Wentao Zhang
Then we propose a geometry-aware 4D transition network to realize a complex scene-level 4D transition based on the plan, which involves expressive geometrical object deformation.
1 code implementation • 24 Sep 2024 • Haotian Ye, Haowei Lin, Jiaqi Han, Minkai Xu, Sheng Liu, Yitao Liang, Jianzhu Ma, James Zou, Stefano Ermon
Given an unconditional diffusion model and a predictor for a target property of interest (e. g., a classifier), the goal of training-free guidance is to generate samples with desirable target properties without additional training.
no code implementations • 12 Jul 2024 • Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu, Xiao-Wen Chang, Doina Precup, Rex Ying, Stan Z. Li, Jian Tang, Guy Wolf, Stefanie Jegelka
In this survey, we provide a comprehensive review of the latest progress on heterophilic graph learning, including an extensive summary of benchmark datasets and evaluation of homophily metrics on synthetic graphs, meticulous classification of the most updated supervised and unsupervised learning methods, thorough digestion of the theoretical analysis on homophily/heterophily, and broad exploration of the heterophily-related applications.
1 code implementation • 2 Jul 2024 • Ling Yang, Zixiang Zhang, Zhilong Zhang, Xingchao Liu, Minkai Xu, Wentao Zhang, Chenlin Meng, Stefano Ermon, Bin Cui
Additionally, we propose a multi-segment training approach for Consistency-FM to enhance expressiveness, achieving a better trade-off between sampling quality and speed.
1 code implementation • 1 Jul 2024 • Siyi Gu, Minkai Xu, Alexander Powers, Weili Nie, Tomas Geffner, Karsten Kreis, Jure Leskovec, Arash Vahdat, Stefano Ermon
AliDiff shifts the target-conditioned chemical distribution towards regions with higher binding affinity and structural rationality, specified by user-defined reward functions, via the preference optimization approach.
1 code implementation • 6 Jun 2024 • Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E. Gonzalez, Bin Cui
We introduce Buffer of Thoughts (BoT), a novel and versatile thought-augmented reasoning approach for enhancing accuracy, efficiency and robustness of large language models (LLMs).
1 code implementation • 26 Feb 2024 • Ling Yang, Zhilong Zhang, Zhaochen Yu, Jingwei Liu, Minkai Xu, Stefano Ermon, Bin Cui
To address this issue, we propose a novel and general contextualized diffusion model (ContextDiff) by incorporating the cross-modal context encompassing interactions and alignments between text condition and visual sample into forward and reverse processes.
2 code implementations • 20 Feb 2024 • Xinchen Zhang, Ling Yang, Yaqi Cai, Zhaochen Yu, Kai-Ni Wang, Jiake Xie, Ye Tian, Minkai Xu, Yong Tang, Yujiu Yang, Bin Cui
In this paper, we propose RealCompo, a new training-free and transferred-friendly text-to-image generation framework, which aims to leverage the respective advantages of text-to-image models and spatial-aware image diffusion models (e. g., layout, keypoints and segmentation maps) to enhance both realism and compositionality of the generated images.
1 code implementation • 22 Jan 2024 • Ling Yang, Zhaochen Yu, Chenlin Meng, Minkai Xu, Stefano Ermon, Bin Cui
In this paper, we propose a brand new training-free text-to-image generation/editing framework, namely Recaption, Plan and Generate (RPG), harnessing the powerful chain-of-thought reasoning ability of multimodal LLMs to enhance the compositionality of text-to-image diffusion models.
1 code implementation • 19 Jan 2024 • Minkai Xu, Jiaqi Han, Aaron Lou, Jean Kossaifi, Arvind Ramanathan, Kamyar Azizzadenesheli, Jure Leskovec, Stefano Ermon, Anima Anandkumar
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods, thanks to the equivariant temporal modeling.
1 code implementation • 12 Dec 2023 • Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou, Wei-Ying Ma
The generation of 3D molecules requires simultaneously deciding the categorical features~(atom types) and continuous features~(atom coordinates).
no code implementations • 23 Nov 2023 • Yiming Wang, Yuxuan Song, Minkai Xu, Rui Wang, Hao Zhou, WeiYing Ma
Our key innovation is to develop a multi-stage diffusion process.
1 code implementation • 4 Aug 2023 • Ling Yang, Ye Tian, Minkai Xu, Zhongyi Liu, Shenda Hong, Wei Qu, Wentao Zhang, Bin Cui, Muhan Zhang, Jure Leskovec
To address this issue, we propose to learn a new powerful graph representation space by directly labeling nodes' diverse local structures for GNN-to-MLP distillation.
1 code implementation • 17 Jul 2023 • Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng Wang, Alex Strasser, Haiyang Yu, Yuqing Xie, Xiang Fu, Shenglong Xu, Yi Liu, Yuanqi Du, Alexandra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Edwards, Nicholas Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang, Ameya Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu, Chaitanya K. Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alán Aspuru-Guzik, Erik Bekkers, Michael Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon, Pietro Liò, Rose Yu, Stephan Günnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina Barzilay, Tommi Jaakkola, Connor W. Coley, Xiaoning Qian, Xiaofeng Qian, Tess Smidt, Shuiwang Ji
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences.
1 code implementation • 27 May 2023 • Zhengbang Zhu, Minghuan Liu, Liyuan Mao, Bingyi Kang, Minkai Xu, Yong Yu, Stefano Ermon, Weinan Zhang
Offline reinforcement learning (RL) aims to learn policies from pre-existing datasets without further interactions, making it a challenging task.
1 code implementation • 5 May 2023 • Bo Qiang, Yuxuan Song, Minkai Xu, Jingjing Gong, Bowen Gao, Hao Zhou, WeiYing Ma, Yanyan Lan
Generating desirable molecular structures in 3D is a fundamental problem for drug discovery.
2 code implementations • 2 May 2023 • Minkai Xu, Alexander Powers, Ron Dror, Stefano Ermon, Jure Leskovec
Generative models, especially diffusion models (DMs), have achieved promising results for generating feature-rich geometries and advancing foundational science problems such as molecule design.
no code implementations • 28 Apr 2023 • Chenqing Hua, Sitao Luan, Minkai Xu, Rex Ying, Jie Fu, Stefano Ermon, Doina Precup
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
1 code implementation • 25 Apr 2023 • Sitao Luan, Chenqing Hua, Minkai Xu, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, Jie Fu, Jure Leskovec, Doina Precup
Homophily principle, i. e., nodes with the same labels are more likely to be connected, has been believed to be the main reason for the performance superiority of Graph Neural Networks (GNNs) over Neural Networks on node classification tasks.
1 code implementation • 30 Sep 2022 • Songtao Liu, Zhengkai Tu, Minkai Xu, Zuobai Zhang, Lu Lin, Rex Ying, Jian Tang, Peilin Zhao, Dinghao Wu
Current strategies use a decoupled approach of single-step retrosynthesis models and search algorithms, taking only the product as the input to predict the reactants for each planning step and ignoring valuable context information along the synthetic route.
2 code implementations • ICLR 2022 • Minkai Xu, Lantao Yu, Yang song, Chence Shi, Stefano Ermon, Jian Tang
GeoDiff treats each atom as a particle and learns to directly reverse the diffusion process (i. e., transforming from a noise distribution to stable conformations) as a Markov chain.
1 code implementation • 28 Jan 2022 • Wujie Wang, Minkai Xu, Chen Cai, Benjamin Kurt Miller, Tess Smidt, Yusu Wang, Jian Tang, Rafael Gómez-Bombarelli
Coarse-graining (CG) of molecular simulations simplifies the particle representation by grouping selected atoms into pseudo-beads and drastically accelerates simulation.
no code implementations • NeurIPS 2021 • Shitong Luo, Chence Shi, Minkai Xu, Jian Tang
However, these non-bonded atoms may be proximal to each other in 3D space, and modeling their interactions is of crucial importance to accurately determine molecular conformations, especially for large molecules and multi-molecular complexes.
1 code implementation • 15 May 2021 • Minkai Xu, Wujie Wang, Shitong Luo, Chence Shi, Yoshua Bengio, Rafael Gomez-Bombarelli, Jian Tang
Specifically, the molecular graph is first encoded in a latent space, and then the 3D structures are generated by solving a principled bilevel optimization program.
6 code implementations • 9 May 2021 • Chence Shi, Shitong Luo, Minkai Xu, Jian Tang
We study a fundamental problem in computational chemistry known as molecular conformation generation, trying to predict stable 3D structures from 2D molecular graphs.
3 code implementations • ICLR 2021 • Minkai Xu, Shitong Luo, Yoshua Bengio, Jian Peng, Jian Tang
Inspired by the recent progress in deep generative models, in this paper, we propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
1 code implementation • 7 Dec 2020 • Minkai Xu, Zhiming Zhou, Guansong Lu, Jian Tang, Weinan Zhang, Yong Yu
Wasserstein GANs (WGANs), built upon the Kantorovich-Rubinstein (KR) duality of Wasserstein distance, is one of the most theoretically sound GAN models.
1 code implementation • 5 Dec 2020 • Minkai Xu, Mingxuan Wang, Zhouhan Lin, Hao Zhou, Weinan Zhang, Lei LI
Despite the recent success on image classification, self-training has only achieved limited gains on structured prediction tasks such as neural machine translation (NMT).
1 code implementation • 20 Apr 2020 • Minghuan Liu, Tairan He, Minkai Xu, Wei-Nan Zhang
We tackle a common scenario in imitation learning (IL), where agents try to recover the optimal policy from expert demonstrations without further access to the expert or environment reward signals.
1 code implementation • 5 Apr 2020 • Yuxuan Song, Qiwei Ye, Minkai Xu, Tie-Yan Liu
Generative Adversarial Networks (GANs) have shown great promise in modeling high dimensional data.
Ranked #13 on
Image Generation
on STL-10
1 code implementation • 3 Apr 2020 • Yuxuan Song, Minkai Xu, Lantao Yu, Hao Zhou, Shuo Shao, Yong Yu
In this paper, motivated by the inherent connections between neural joint source-channel coding and discrete representation learning, we propose a novel regularization method called Infomax Adversarial-Bit-Flip (IABF) to improve the stability and robustness of the neural joint source-channel coding scheme.
no code implementations • ICML 2020 • Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, Jian Tang
A fundamental problem in computational chemistry is to find a set of reactants to synthesize a target molecule, a. k. a.
Ranked #29 on
Single-step retrosynthesis
on USPTO-50k
1 code implementation • ICLR 2020 • Chence Shi, Minkai Xu, Zhaocheng Zhu, Wei-Nan Zhang, Ming Zhang, Jian Tang
Molecular graph generation is a fundamental problem for drug discovery and has been attracting growing attention.
Ranked #1 on
Molecular Graph Generation
on MOSES