Search Results for author: Miriam Leeser

Found 3 papers, 2 papers with code

EdgeQAT: Entropy and Distribution Guided Quantization-Aware Training for the Acceleration of Lightweight LLMs on the Edge

1 code implementation16 Feb 2024 Xuan Shen, Zhenglun Kong, Changdi Yang, Zhaoyang Han, Lei Lu, Peiyan Dong, Cheng Lyu, Chih-hsiang Li, Xuehang Guo, Zhihao Shu, Wei Niu, Miriam Leeser, Pu Zhao, Yanzhi Wang

In this paper, we propose EdgeQAT, the Entropy and Distribution Guided QAT for the optimization of lightweight LLMs to achieve inference acceleration on Edge devices.

Quantization

Auto-ViT-Acc: An FPGA-Aware Automatic Acceleration Framework for Vision Transformer with Mixed-Scheme Quantization

no code implementations10 Aug 2022 Zhengang Li, Mengshu Sun, Alec Lu, Haoyu Ma, Geng Yuan, Yanyue Xie, Hao Tang, Yanyu Li, Miriam Leeser, Zhangyang Wang, Xue Lin, Zhenman Fang

Compared with state-of-the-art ViT quantization work (algorithmic approach only without hardware acceleration), our quantization achieves 0. 47% to 1. 36% higher Top-1 accuracy under the same bit-width.

Quantization

QuTiBench: Benchmarking Neural Networks on Heterogeneous Hardware

1 code implementation11 Sep 2019 Michaela Blott, Lisa Halder, Miriam Leeser, Linda Doyle

In order to address these implementation challenges, a broad spectrum of new customized and heterogeneous hardware architectures have emerged, often accompanied with co-designed algorithms to extract maximum benefit out of the hardware.

Hardware Architecture

Cannot find the paper you are looking for? You can Submit a new open access paper.