1 code implementation • 8 Jul 2024 • Katie Everett, Lechao Xiao, Mitchell Wortsman, Alexander A. Alemi, Roman Novak, Peter J. Liu, Izzeddin Gur, Jascha Sohl-Dickstein, Leslie Pack Kaelbling, Jaehoon Lee, Jeffrey Pennington
Robust and effective scaling of models from small to large width typically requires the precise adjustment of many algorithmic and architectural details, such as parameterization and optimizer choices.
3 code implementations • 27 Jun 2024 • Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, Yair Carmon
As a secondary result, we derive scaling laws for the optimal learning rate and batch size, finding that tuning the AdamW $\beta_2$ parameter is essential at lower batch sizes.
3 code implementations • 17 Jun 2024 • Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej Kilian, HANLIN ZHANG, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, Vaishaal Shankar
We introduce DataComp for Language Models (DCLM), a testbed for controlled dataset experiments with the goal of improving language models.
1 code implementation • 13 Mar 2024 • Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Wortsman, Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, Rui Xin, Marianna Nezhurina, Igor Vasiljevic, Jenia Jitsev, Luca Soldaini, Alexandros G. Dimakis, Gabriel Ilharco, Pang Wei Koh, Shuran Song, Thomas Kollar, Yair Carmon, Achal Dave, Reinhard Heckel, Niklas Muennighoff, Ludwig Schmidt
Second, we relate the perplexity of a language model to its downstream task performance by proposing a power law.
3 code implementations • 1 Feb 2024 • Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell Authur, Khyathi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh Shah, Will Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini, Noah A. Smith, Hannaneh Hajishirzi
Given the importance of these details in scientifically studying these models, including their biases and potential risks, we believe it is essential for the research community to have access to powerful, truly open LMs.
1 code implementation • 25 Sep 2023 • Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D. Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha Sohl-Dickstein, Kelvin Xu, Jaehoon Lee, Justin Gilmer, Simon Kornblith
In this work, we seek ways to reproduce and study training stability and instability at smaller scales.
no code implementations • 15 Sep 2023 • Mitchell Wortsman, Jaehoon Lee, Justin Gilmer, Simon Kornblith
Previous research observed accuracy degradation when replacing the attention softmax with a point-wise activation such as ReLU.
2 code implementations • 2 Aug 2023 • Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe, Yonatan Bitton, Samir Gadre, Shiori Sagawa, Jenia Jitsev, Simon Kornblith, Pang Wei Koh, Gabriel Ilharco, Mitchell Wortsman, Ludwig Schmidt
We introduce OpenFlamingo, a family of autoregressive vision-language models ranging from 3B to 9B parameters.
Ranked #14 on
Visual Question Answering (VQA)
on InfiMM-Eval
3 code implementations • NeurIPS 2023 • Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad, Rahim Entezari, Giannis Daras, Sarah Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani Marathe, Stephen Mussmann, Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei Koh, Olga Saukh, Alexander Ratner, Shuran Song, Hannaneh Hajishirzi, Ali Farhadi, Romain Beaumont, Sewoong Oh, Alex Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar, Ludwig Schmidt
Multimodal datasets are a critical component in recent breakthroughs such as Stable Diffusion and GPT-4, yet their design does not receive the same research attention as model architectures or training algorithms.
1 code implementation • NeurIPS 2023 • Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, Ludwig Schmidt
We introduce new methods for 1) accelerating and 2) stabilizing training for large language-vision models.
2 code implementations • 27 Feb 2023 • Rahim Entezari, Mitchell Wortsman, Olga Saukh, M. Moein Shariatnia, Hanie Sedghi, Ludwig Schmidt
We investigate the impact of pre-training data distribution on the few-shot and full fine-tuning performance using 3 pre-training methods (supervised, contrastive language-image and image-image), 7 pre-training datasets, and 9 downstream datasets.
4 code implementations • CVPR 2023 • Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gordon, Christoph Schuhmann, Ludwig Schmidt, Jenia Jitsev
To address these limitations, we investigate scaling laws for contrastive language-image pre-training (CLIP) with the public LAION dataset and the open-source OpenCLIP repository.
Ranked #1 on
Zero-Shot Image Classification
on Country211
(using extra training data)
7 code implementations • 8 Dec 2022 • Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt, Hannaneh Hajishirzi, Ali Farhadi
Changing how pre-trained models behave -- e. g., improving their performance on a downstream task or mitigating biases learned during pre-training -- is a common practice when developing machine learning systems.
no code implementations • 22 Oct 2022 • Anas Awadalla, Mitchell Wortsman, Gabriel Ilharco, Sewon Min, Ian Magnusson, Hannaneh Hajishirzi, Ludwig Schmidt
We conduct a large empirical evaluation to investigate the landscape of distributional robustness in question answering.
no code implementations • 19 Oct 2022 • Mitchell Wortsman, Suchin Gururangan, Shen Li, Ali Farhadi, Ludwig Schmidt, Michael Rabbat, Ari S. Morcos
When fine-tuning DeiT-base and DeiT-large on ImageNet, this procedure matches accuracy in-distribution and improves accuracy under distribution shift compared to the baseline, which observes the same amount of data but communicates gradients at each step.
4 code implementations • NeurIPS 2022 Datasets and Benchmarks 2022 • Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski, Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, Jenia Jitsev
We show successful replication and fine-tuning of foundational models like CLIP, GLIDE and Stable Diffusion using the dataset, and discuss further experiments enabled with an openly available dataset of this scale.
1 code implementation • 10 Aug 2022 • Thao Nguyen, Gabriel Ilharco, Mitchell Wortsman, Sewoong Oh, Ludwig Schmidt
Web-crawled datasets have enabled remarkable generalization capabilities in recent image-text models such as CLIP (Contrastive Language-Image pre-training) or Flamingo, but little is known about the dataset creation processes.
1 code implementation • 10 Aug 2022 • Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Simon Kornblith, Ali Farhadi, Ludwig Schmidt
We study model patching, where the goal is to improve accuracy on specific tasks without degrading accuracy on tasks where performance is already adequate.
2 code implementations • 3 May 2022 • Alex Fang, Gabriel Ilharco, Mitchell Wortsman, Yuhao Wan, Vaishaal Shankar, Achal Dave, Ludwig Schmidt
Contrastively trained language-image models such as CLIP, ALIGN, and BASIC have demonstrated unprecedented robustness to multiple challenging natural distribution shifts.
Ranked #94 on
Image Classification
on ObjectNet
(using extra training data)
1 code implementation • CVPR 2023 • Samir Yitzhak Gadre, Mitchell Wortsman, Gabriel Ilharco, Ludwig Schmidt, Shuran Song
To better evaluate L-ZSON, we introduce the Pasture benchmark, which considers finding uncommon objects, objects described by spatial and appearance attributes, and hidden objects described relative to visible objects.
6 code implementations • 10 Mar 2022 • Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, Ludwig Schmidt
The conventional recipe for maximizing model accuracy is to (1) train multiple models with various hyperparameters and (2) pick the individual model which performs best on a held-out validation set, discarding the remainder.
Ranked #1 on
Image Classification
on ImageNet V2
(using extra training data)
3 code implementations • CVPR 2022 • Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs, Raphael Gontijo-Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, Ludwig Schmidt
Compared to standard fine-tuning, WiSE-FT provides large accuracy improvements under distribution shift, while preserving high accuracy on the target distribution.
Ranked #12 on
Image Classification
on ObjectNet
(using extra training data)
1 code implementation • 20 Feb 2021 • Mitchell Wortsman, Maxwell Horton, Carlos Guestrin, Ali Farhadi, Mohammad Rastegari
Recent observations have advanced our understanding of the neural network optimization landscape, revealing the existence of (1) paths of high accuracy containing diverse solutions and (2) wider minima offering improved performance.
no code implementations • 30 Nov 2020 • Maxwell Van Gelder, Mitchell Wortsman, Kiana Ehsani
Although sparse neural networks have been studied extensively, the focus has been primarily on accuracy.
2 code implementations • NeurIPS 2020 • Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari, Jason Yosinski, Ali Farhadi
We present the Supermasks in Superposition (SupSup) model, capable of sequentially learning thousands of tasks without catastrophic forgetting.
1 code implementation • ICML 2020 • Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade, Ali Farhadi
Sparsity in Deep Neural Networks (DNNs) is studied extensively with the focus of maximizing prediction accuracy given an overall parameter budget.
4 code implementations • CVPR 2020 • Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, Mohammad Rastegari
Training a neural network is synonymous with learning the values of the weights.
Ranked #989 on
Image Classification
on ImageNet
4 code implementations • NeurIPS 2019 • Mitchell Wortsman, Ali Farhadi, Mohammad Rastegari
In this work we propose a method for discovering neural wirings.
2 code implementations • CVPR 2019 • Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari, Ali Farhadi, Roozbeh Mottaghi
In this paper we study the problem of learning to learn at both training and test time in the context of visual navigation.
Ranked #2 on
Visual Navigation
on AI2-THOR