no code implementations • 7 Aug 2024 • Beatriz Borges, Negar Foroutan, Deniz Bayazit, Anna Sotnikova, Syrielle Montariol, Tanya Nazaretzky, Mohammadreza Banaei, Alireza Sakhaeirad, Philippe Servant, Seyed Parsa Neshaei, Jibril Frej, Angelika Romanou, Gail Weiss, Sepideh Mamooler, Zeming Chen, Simin Fan, Silin Gao, Mete Ismayilzada, Debjit Paul, Alexandre Schöpfer, Andrej Janchevski, Anja Tiede, Clarence Linden, Emanuele Troiani, Francesco Salvi, Freya Behrens, Giacomo Orsi, Giovanni Piccioli, Hadrien Sevel, Louis Coulon, Manuela Pineros-Rodriguez, Marin Bonnassies, Pierre Hellich, Puck van Gerwen, Sankalp Gambhir, Solal Pirelli, Thomas Blanchard, Timothée Callens, Toni Abi Aoun, Yannick Calvino Alonso, Yuri Cho, Alberto Chiappa, Antonio Sclocchi, Étienne Bruno, Florian Hofhammer, Gabriel Pescia, Geovani Rizk, Leello Dadi, Lucas Stoffl, Manoel Horta Ribeiro, Matthieu Bovel, Yueyang Pan, Aleksandra Radenovic, Alexandre Alahi, Alexander Mathis, Anne-Florence Bitbol, Boi Faltings, Cécile Hébert, Devis Tuia, François Maréchal, George Candea, Giuseppe Carleo, Jean-Cédric Chappelier, Nicolas Flammarion, Jean-Marie Fürbringer, Jean-Philippe Pellet, Karl Aberer, Lenka Zdeborová, Marcel Salathé, Martin Jaggi, Martin Rajman, Mathias Payer, Matthieu Wyart, Michael Gastpar, Michele Ceriotti, Ola Svensson, Olivier Lévêque, Paolo Ienne, Rachid Guerraoui, Robert West, Sanidhya Kashyap, Valerio Piazza, Viesturs Simanis, Viktor Kuncak, Volkan Cevher, Philippe Schwaller, Sacha Friedli, Patrick Jermann, Tanja Käser, Antoine Bosselut
We investigate the potential scale of this vulnerability by measuring the degree to which AI assistants can complete assessment questions in standard university-level STEM courses.
1 code implementation • 27 May 2024 • Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, Jacek Tabor
The rapid expansion of large language models (LLMs) has underscored the need for parameter-efficient fine-tuning methods, with LoRA (Low-Rank Adaptation) emerging as a popular solution.
1 code implementation • 23 Oct 2023 • Negar Foroutan, Mohammadreza Banaei, Karl Aberer, Antoine Bosselut
We evaluate the cross-lingual reasoning abilities of MultiLMs in two schemes: (1) where the language of the context and the question remain the same in the new languages that are tested (i. e., the reasoning is still monolingual, but the model must transfer the learned reasoning ability across languages), and (2) where the language of the context and the question is different (which we term code-switched reasoning).
1 code implementation • 8 Feb 2023 • Mohammadreza Banaei, Klaudia Bałazy, Artur Kasymov, Rémi Lebret, Jacek Tabor, Karl Aberer
Recent transformer language models achieve outstanding results in many natural language processing (NLP) tasks.
1 code implementation • 25 May 2022 • Negar Foroutan, Mohammadreza Banaei, Remi Lebret, Antoine Bosselut, Karl Aberer
Multilingual pre-trained language models transfer remarkably well on cross-lingual downstream tasks.
1 code implementation • 30 Mar 2022 • Tim Poštuvan, Jiaxuan You, Mohammadreza Banaei, Rémi Lebret, Jure Leskovec
To mitigate these limitations, we propose Adaptive Grid Search (AdaGrid), which dynamically adjusts the edge message ratio during training.
1 code implementation • ACL (RepL4NLP) 2021 • Klaudia Bałazy, Mohammadreza Banaei, Rémi Lebret, Jacek Tabor, Karl Aberer
The adoption of Transformer-based models in natural language processing (NLP) has led to great success using a massive number of parameters.
no code implementations • 5 Jun 2020 • Mohammadreza Banaei, Rémi Lebret, Karl Aberer
This paper presents our approach for SwissText & KONVENS 2020 shared task 2, which is a multi-stage neural model for Swiss German (GSW) identification on Twitter.