Search Results for author: Mohammadreza Banaei

Found 8 papers, 6 papers with code

Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants

no code implementations7 Aug 2024 Beatriz Borges, Negar Foroutan, Deniz Bayazit, Anna Sotnikova, Syrielle Montariol, Tanya Nazaretzky, Mohammadreza Banaei, Alireza Sakhaeirad, Philippe Servant, Seyed Parsa Neshaei, Jibril Frej, Angelika Romanou, Gail Weiss, Sepideh Mamooler, Zeming Chen, Simin Fan, Silin Gao, Mete Ismayilzada, Debjit Paul, Alexandre Schöpfer, Andrej Janchevski, Anja Tiede, Clarence Linden, Emanuele Troiani, Francesco Salvi, Freya Behrens, Giacomo Orsi, Giovanni Piccioli, Hadrien Sevel, Louis Coulon, Manuela Pineros-Rodriguez, Marin Bonnassies, Pierre Hellich, Puck van Gerwen, Sankalp Gambhir, Solal Pirelli, Thomas Blanchard, Timothée Callens, Toni Abi Aoun, Yannick Calvino Alonso, Yuri Cho, Alberto Chiappa, Antonio Sclocchi, Étienne Bruno, Florian Hofhammer, Gabriel Pescia, Geovani Rizk, Leello Dadi, Lucas Stoffl, Manoel Horta Ribeiro, Matthieu Bovel, Yueyang Pan, Aleksandra Radenovic, Alexandre Alahi, Alexander Mathis, Anne-Florence Bitbol, Boi Faltings, Cécile Hébert, Devis Tuia, François Maréchal, George Candea, Giuseppe Carleo, Jean-Cédric Chappelier, Nicolas Flammarion, Jean-Marie Fürbringer, Jean-Philippe Pellet, Karl Aberer, Lenka Zdeborová, Marcel Salathé, Martin Jaggi, Martin Rajman, Mathias Payer, Matthieu Wyart, Michael Gastpar, Michele Ceriotti, Ola Svensson, Olivier Lévêque, Paolo Ienne, Rachid Guerraoui, Robert West, Sanidhya Kashyap, Valerio Piazza, Viesturs Simanis, Viktor Kuncak, Volkan Cevher, Philippe Schwaller, Sacha Friedli, Patrick Jermann, Tanja Käser, Antoine Bosselut

We investigate the potential scale of this vulnerability by measuring the degree to which AI assistants can complete assessment questions in standard university-level STEM courses.

LoRA-XS: Low-Rank Adaptation with Extremely Small Number of Parameters

1 code implementation27 May 2024 Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, Jacek Tabor

The rapid expansion of large language models (LLMs) has underscored the need for parameter-efficient fine-tuning methods, with LoRA (Low-Rank Adaptation) emerging as a popular solution.

Benchmarking GSM8K +2

Breaking the Language Barrier: Improving Cross-Lingual Reasoning with Structured Self-Attention

1 code implementation23 Oct 2023 Negar Foroutan, Mohammadreza Banaei, Karl Aberer, Antoine Bosselut

We evaluate the cross-lingual reasoning abilities of MultiLMs in two schemes: (1) where the language of the context and the question remain the same in the new languages that are tested (i. e., the reasoning is still monolingual, but the model must transfer the learned reasoning ability across languages), and (2) where the language of the context and the question is different (which we term code-switched reasoning).

Logical Reasoning

AdaGrid: Adaptive Grid Search for Link Prediction Training Objective

1 code implementation30 Mar 2022 Tim Poštuvan, Jiaxuan You, Mohammadreza Banaei, Rémi Lebret, Jure Leskovec

To mitigate these limitations, we propose Adaptive Grid Search (AdaGrid), which dynamically adjusts the edge message ratio during training.

BIG-bench Machine Learning Graph Neural Network +1

Spoken dialect identification in Twitter using a multi-filter architecture

no code implementations5 Jun 2020 Mohammadreza Banaei, Rémi Lebret, Karl Aberer

This paper presents our approach for SwissText & KONVENS 2020 shared task 2, which is a multi-stage neural model for Swiss German (GSW) identification on Twitter.

Dialect Identification Task 2

Cannot find the paper you are looking for? You can Submit a new open access paper.