no code implementations • 7 Oct 2021 • Afshar Shamsi, Hamzeh Asgharnezhad, Moloud Abdar, AmirReza Tajally, Abbas Khosravi, Saeid Nahavandi, Henry Leung
Uncertainty quantification of machine learning and deep learning methods plays an important role in enhancing trust to the obtained result.
1 code implementation • 24 Aug 2021 • Zakaria Senousy, Mohammed M. Abdelsamea, Mohamed Medhat Gaber, Moloud Abdar, U Rajendra Acharya, Abbas Khosravi, Saeid Nahavandi
It exploits the high sensitivity to the multi-level contextual information using an uncertainty quantification component to accomplish a novel dynamic ensemble model. MCUamodelhas achieved a high accuracy of 98. 11% on a breast cancer histology image dataset.
Breast Cancer Histology Image Classification
Classification
+1
1 code implementation • 18 May 2021 • Moloud Abdar, Soorena Salari, Sina Qahremani, Hak-Keung Lam, Fakhri Karray, Sadiq Hussain, Abbas Khosravi, U. Rajendra Acharya, Vladimir Makarenkov, Saeid Nahavandi
Differently from most of existing studies, which used either CT scan or X-ray images in COVID-19-case classification, we present a simple but efficient deep learning feature fusion model, called UncertaintyFuseNet, which is able to classify accurately large datasets of both of these types of images.
1 code implementation • 17 Nov 2020 • Farhad Pourpanah, Moloud Abdar, Yuxuan Luo, Xinlei Zhou, Ran Wang, Chee Peng Lim, Xi-Zhao Wang, Q. M. Jonathan Wu
Generalized zero-shot learning (GZSL) aims to train a model for classifying data samples under the condition that some output classes are unknown during supervised learning.
no code implementations • 12 Nov 2020 • Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, Vladimir Makarenkov, Saeid Nahavandi
Uncertainty quantification (UQ) plays a pivotal role in reduction of uncertainties during both optimization and decision making processes.
no code implementations • 23 Aug 2020 • Roohallah Alizadehsani, Mohamad Roshanzamir, Sadiq Hussain, Abbas Khosravi, Afsaneh Koohestani, Mohammad Hossein Zangooei, Moloud Abdar, Adham Beykikhoshk, Afshin Shoeibi, Assef Zare, Maryam Panahiazar, Saeid Nahavandi, Dipti Srinivasan, Amir F. Atiya, U. Rajendra Acharya
We have little knowledge about the optimal treatment methods as there are many sources of uncertainty in medical science.
2 code implementations • arXiv 2020 • H M Dipu Kabir, Moloud Abdar, Seyed Mohammad Jafar Jalali, Abbas Khosravi, Amir F. Atiya, Saeid Nahavandi, Dipti Srinivasan
Traditional learning with ImageNet pre-trained initial weights and SpinalNet classification layers provided the SOTA performance on STL-10, Fruits 360, Bird225, and Caltech-101 datasets.
Ranked #1 on
Image Classification
on Kuzushiji-MNIST
no code implementations • 17 Sep 2019 • Thang Doan, Bogdan Mazoure, Moloud Abdar, Audrey Durand, Joelle Pineau, R. Devon Hjelm
Continuous control tasks in reinforcement learning are important because they provide an important framework for learning in high-dimensional state spaces with deceptive rewards, where the agent can easily become trapped into suboptimal solutions.