no code implementations • 30 Nov 2022 • Pietro Bongini, Elisa Messori, Niccolò Pancino, Monica Bianchini
Predicting drug side-effects before they occur is a key task in keeping the number of drug-related hospitalizations low and to improve drug discovery processes.
no code implementations • 15 Feb 2022 • Pietro Bongini, Franco Scarselli, Monica Bianchini, Giovanna Maria Dimitri, Niccolò Pancino, Pietro Liò
Drug Side-Effects (DSEs) have a high impact on public health, care system costs, and drug discovery processes.
no code implementations • 16 Jun 2021 • Giuseppe Alessio D'Inverno, Monica Bianchini, Maria Lucia Sampoli, Franco Scarselli
Graph Neural Networks (GNNs) are a broad class of connectionist models for graph processing.
no code implementations • 9 Jun 2021 • Giorgio Ciano, Paolo Andreini, Tommaso Mazzierli, Monica Bianchini, Franco Scarselli
Multi-organ segmentation of X-ray images is of fundamental importance for computer aided diagnosis systems.
no code implementations • 14 Dec 2020 • Pietro Bongini, Monica Bianchini, Franco Scarselli
The use of graph neural networks maximizes the information in input at each generative step, which consists of the subgraph produced during the previous steps.
no code implementations • 19 Nov 2019 • Simone Bonechi, Paolo Andreini, Monica Bianchini, Franco Scarselli
Providing pixel-level supervisions for scene text segmentation is inherently difficult and costly, so that only few small datasets are available for this task.
no code implementations • 29 Jul 2019 • Paolo Andreini, Simone Bonechi, Monica Bianchini, Alessandro Mecocci, Franco Scarselli, Andrea Sodi
In this paper, we use Generative Adversarial Networks (GANs) for synthesizing high quality retinal images, along with the corresponding semantic label-maps, to be used instead of real images during the training process.
no code implementations • 1 Apr 2019 • Simone Bonechi, Paolo Andreini, Monica Bianchini, Franco Scarselli
The generated annotations are used to train a deep convolutional neural network for semantic segmentation.
no code implementations • 21 Jul 2018 • Alberto Rossi, Gianni Barlacchi, Monica Bianchini, Bruno Lepri
In this paper, we study how to model taxi drivers' behaviour and geographical information for an interesting and challenging task: the next destination prediction in a taxi journey.