no code implementations • 25 Sep 2024 • Neda Zamanitajeddin, Mostafa Jahanifar, Kesi Xu, Fouzia Siraj, Nasir Rajpoot
Deep learning models have shown immense promise in computational pathology (CPath) tasks, but their performance often suffers when applied to unseen data due to domain shifts.
1 code implementation • 15 Feb 2024 • Mark Eastwood, John Pocock, Mostafa Jahanifar, Adam Shephard, Skiros Habib, Ethar Alzaid, Abdullah Alsalemi, Jan Lukas Robertus, Nasir Rajpoot, Shan Raza, Fayyaz Minhas
Throughout the development of a machine learning (ML) model in digital pathology, it is crucial to have flexible, openly available tools to visualize models, from their outputs and predictions to the underlying annotations and images used to train or test a model.
1 code implementation • 10 Nov 2023 • Adam J Shephard, Mostafa Jahanifar, Ruoyu Wang, Muhammad Dawood, Simon Graham, Kastytis Sidlauskas, Syed Ali Khurram, Nasir M Rajpoot, Shan E Ahmed Raza
Tumour-infiltrating lymphocytes (TILs) are considered as a valuable prognostic markers in both triple-negative and human epidermal growth factor receptor 2 (HER2) positive breast cancer.
no code implementations • 30 Oct 2023 • Mostafa Jahanifar, Manahil Raza, Kesi Xu, Trinh Vuong, Rob Jewsbury, Adam Shephard, Neda Zamanitajeddin, Jin Tae Kwak, Shan E Ahmed Raza, Fayyaz Minhas, Nasir Rajpoot
Deep learning models have exhibited exceptional effectiveness in Computational Pathology (CPath) by tackling intricate tasks across an array of histology image analysis applications.
no code implementations • 27 Sep 2023 • Marc Aubreville, Nikolas Stathonikos, Taryn A. Donovan, Robert Klopfleisch, Jonathan Ganz, Jonas Ammeling, Frauke Wilm, Mitko Veta, Samir Jabari, Markus Eckstein, Jonas Annuscheit, Christian Krumnow, Engin Bozaba, Sercan Cayir, Hongyan Gu, Xiang 'Anthony' Chen, Mostafa Jahanifar, Adam Shephard, Satoshi Kondo, Satoshi Kasai, Sujatha Kotte, VG Saipradeep, Maxime W. Lafarge, Viktor H. Koelzer, Ziyue Wang, Yongbing Zhang, Sen yang, Xiyue Wang, Katharina Breininger, Christof A. Bertram
The challenge provided annotated histologic tumor images from six different domains and evaluated the algorithmic approaches for mitotic figure detection provided by nine challenge participants on ten independent domains.
no code implementations • 6 Jul 2023 • Adam J Shephard, Raja Muhammad Saad Bashir, Hanya Mahmood, Mostafa Jahanifar, Fayyaz Minhas, Shan E Ahmed Raza, Kris D McCombe, Stephanie G Craig, Jacqueline James, Jill Brooks, Paul Nankivell, Hisham Mehanna, Syed Ali Khurram, Nasir M Rajpoot
To address this, we developed a novel artificial intelligence algorithm that can assign an Oral Malignant Transformation (OMT) risk score, based on histological patterns in the in Haematoxylin and Eosin stained whole slide images, to quantify the risk of OED progression.
no code implementations • CVPR 2023 • Matthias Eisenmann, Annika Reinke, Vivienn Weru, Minu Dietlinde Tizabi, Fabian Isensee, Tim J. Adler, Sharib Ali, Vincent Andrearczyk, Marc Aubreville, Ujjwal Baid, Spyridon Bakas, Niranjan Balu, Sophia Bano, Jorge Bernal, Sebastian Bodenstedt, Alessandro Casella, Veronika Cheplygina, Marie Daum, Marleen de Bruijne, Adrien Depeursinge, Reuben Dorent, Jan Egger, David G. Ellis, Sandy Engelhardt, Melanie Ganz, Noha Ghatwary, Gabriel Girard, Patrick Godau, Anubha Gupta, Lasse Hansen, Kanako Harada, Mattias Heinrich, Nicholas Heller, Alessa Hering, Arnaud Huaulmé, Pierre Jannin, Ali Emre Kavur, Oldřich Kodym, Michal Kozubek, Jianning Li, Hongwei Li, Jun Ma, Carlos Martín-Isla, Bjoern Menze, Alison Noble, Valentin Oreiller, Nicolas Padoy, Sarthak Pati, Kelly Payette, Tim Rädsch, Jonathan Rafael-Patiño, Vivek Singh Bawa, Stefanie Speidel, Carole H. Sudre, Kimberlin Van Wijnen, Martin Wagner, Donglai Wei, Amine Yamlahi, Moi Hoon Yap, Chun Yuan, Maximilian Zenk, Aneeq Zia, David Zimmerer, Dogu Baran Aydogan, Binod Bhattarai, Louise Bloch, Raphael Brüngel, Jihoon Cho, Chanyeol Choi, Qi Dou, Ivan Ezhov, Christoph M. Friedrich, Clifton Fuller, Rebati Raman Gaire, Adrian Galdran, Álvaro García Faura, Maria Grammatikopoulou, SeulGi Hong, Mostafa Jahanifar, Ikbeom Jang, Abdolrahim Kadkhodamohammadi, Inha Kang, Florian Kofler, Satoshi Kondo, Hugo Kuijf, Mingxing Li, Minh Huan Luu, Tomaž Martinčič, Pedro Morais, Mohamed A. Naser, Bruno Oliveira, David Owen, Subeen Pang, Jinah Park, Sung-Hong Park, Szymon Płotka, Elodie Puybareau, Nasir Rajpoot, Kanghyun Ryu, Numan Saeed, Adam Shephard, Pengcheng Shi, Dejan Štepec, Ronast Subedi, Guillaume Tochon, Helena R. Torres, Helene Urien, João L. Vilaça, Kareem Abdul Wahid, Haojie Wang, Jiacheng Wang, Liansheng Wang, Xiyue Wang, Benedikt Wiestler, Marek Wodzinski, Fangfang Xia, Juanying Xie, Zhiwei Xiong, Sen yang, Yanwu Yang, Zixuan Zhao, Klaus Maier-Hein, Paul F. Jäger, Annette Kopp-Schneider, Lena Maier-Hein
The "typical" lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning.
1 code implementation • 11 Mar 2023 • Simon Graham, Quoc Dang Vu, Mostafa Jahanifar, Martin Weigert, Uwe Schmidt, Wenhua Zhang, Jun Zhang, Sen yang, Jinxi Xiang, Xiyue Wang, Josef Lorenz Rumberger, Elias Baumann, Peter Hirsch, Lihao Liu, Chenyang Hong, Angelica I. Aviles-Rivero, Ayushi Jain, Heeyoung Ahn, Yiyu Hong, Hussam Azzuni, Min Xu, Mohammad Yaqub, Marie-Claire Blache, Benoît Piégu, Bertrand Vernay, Tim Scherr, Moritz Böhland, Katharina Löffler, Jiachen Li, Weiqin Ying, Chixin Wang, Dagmar Kainmueller, Carola-Bibiane Schönlieb, Shuolin Liu, Dhairya Talsania, Yughender Meda, Prakash Mishra, Muhammad Ridzuan, Oliver Neumann, Marcel P. Schilling, Markus Reischl, Ralf Mikut, Banban Huang, Hsiang-Chin Chien, Ching-Ping Wang, Chia-Yen Lee, Hong-Kun Lin, Zaiyi Liu, Xipeng Pan, Chu Han, Jijun Cheng, Muhammad Dawood, Srijay Deshpande, Raja Muhammad Saad Bashir, Adam Shephard, Pedro Costa, João D. Nunes, Aurélio Campilho, Jaime S. Cardoso, Hrishikesh P S, Densen Puthussery, Devika R G, Jiji C V, Ye Zhang, Zijie Fang, Zhifan Lin, Yongbing Zhang, Chunhui Lin, Liukun Zhang, Lijian Mao, Min Wu, Vi Thi-Tuong Vo, Soo-Hyung Kim, Taebum Lee, Satoshi Kondo, Satoshi Kasai, Pranay Dumbhare, Vedant Phuse, Yash Dubey, Ankush Jamthikar, Trinh Thi Le Vuong, Jin Tae Kwak, Dorsa Ziaei, Hyun Jung, Tianyi Miao, David Snead, Shan E Ahmed Raza, Fayyaz Minhas, Nasir M. Rajpoot
Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome.
no code implementations • 9 Jan 2023 • Quoc Dang Vu, Robert Jewsbury, Simon Graham, Mostafa Jahanifar, Shan E Ahmed Raza, Fayyaz Minhas, Abhir Bhalerao, Nasir Rajpoot
Since the introduction of digital and computational pathology as a field, one of the major problems in the clinical application of algorithms has been the struggle to generalize well to examples outside the distribution of the training data.
no code implementations • 26 Aug 2022 • Mostafa Jahanifar, Adam Shephard, Neda Zamanitajeddin, Simon Graham, Shan E Ahmed Raza, Fayyaz Minhas, Nasir Rajpoot
Counting of mitotic figures is a fundamental step in grading and prognostication of several cancers.
1 code implementation • 23 Aug 2022 • Trinh Thi Le Vuong, Quoc Dang Vu, Mostafa Jahanifar, Simon Graham, Jin Tae Kwak, Nasir Rajpoot
The appearance of histopathology images depends on tissue type, staining and digitization procedure.
1 code implementation • 23 Jun 2022 • Adam Shephard, Mostafa Jahanifar, Ruoyu Wang, Muhammad Dawood, Simon Graham, Kastytis Sidlauskas, Syed Ali Khurram, Nasir Rajpoot, Shan E Ahmed Raza
The Tumor InfiltratinG lymphocytes in breast cancER (TiGER) challenge, aims to assess the prognostic significance of computer-generated TILs scores for predicting survival as part of a Cox proportional hazards model.
no code implementations • 6 Apr 2022 • Marc Aubreville, Nikolas Stathonikos, Christof A. Bertram, Robert Klopleisch, Natalie ter Hoeve, Francesco Ciompi, Frauke Wilm, Christian Marzahl, Taryn A. Donovan, Andreas Maier, Jack Breen, Nishant Ravikumar, Youjin Chung, Jinah Park, Ramin Nateghi, Fattaneh Pourakpour, Rutger H. J. Fick, Saima Ben Hadj, Mostafa Jahanifar, Nasir Rajpoot, Jakob Dexl, Thomas Wittenberg, Satoshi Kondo, Maxime W. Lafarge, Viktor H. Koelzer, Jingtang Liang, YuBo Wang, Xi Long, Jingxin Liu, Salar Razavi, April Khademi, Sen yang, Xiyue Wang, Mitko Veta, Katharina Breininger
The goal of the MICCAI MIDOG 2021 challenge has been to propose and evaluate methods that counter this domain shift and derive scanner-agnostic mitosis detection algorithms.
1 code implementation • 28 Feb 2022 • Simon Graham, Quoc Dang Vu, Mostafa Jahanifar, Shan E Ahmed Raza, Fayyaz Minhas, David Snead, Nasir Rajpoot
In this paper, we present a multi-task learning approach for segmentation and classification of nuclei, glands, lumina and different tissue regions that leverages data from multiple independent data sources.
no code implementations • 29 Nov 2021 • Simon Graham, Mostafa Jahanifar, Quoc Dang Vu, Giorgos Hadjigeorghiou, Thomas Leech, David Snead, Shan E Ahmed Raza, Fayyaz Minhas, Nasir Rajpoot
The challenge encourages researchers to develop algorithms that perform segmentation, classification and counting of nuclei within the current largest known publicly available nuclei-level dataset in CPath, containing around half a million labelled nuclei.
no code implementations • 2 Sep 2021 • Mostafa Jahanifar, Adam Shephard, Neda Zamani Tajeddin, R. M. Saad Bashir, Mohsin Bilal, Syed Ali Khurram, Fayyaz Minhas, Nasir Rajpoot
The detection of mitotic figures from different scanners/sites remains an important topic of research, owing to its potential in assisting clinicians with tumour grading.
no code implementations • 31 Aug 2021 • Adam J. Shephard, Simon Graham, R. M. Saad Bashir, Mostafa Jahanifar, Hanya Mahmood, Syed Ali Khurram, Nasir M. Rajpoot
Oral epithelial dysplasia (OED) is a pre-malignant histopathological diagnosis given to lesions of the oral cavity.
no code implementations • 30 Aug 2021 • Mostafa Jahanifar, Neda Zamani Tajeddin, Navid Alemi Koohbanani, Nasir Rajpoot
From the simple measurement of tissue attributes in pathology workflow to designing an explainable diagnostic/prognostic AI tool, access to accurate semantic segmentation of tissue regions in histology images is a prerequisite.
no code implementations • 25 Aug 2021 • Simon Graham, Mostafa Jahanifar, Ayesha Azam, Mohammed Nimir, Yee-Wah Tsang, Katherine Dodd, Emily Hero, Harvir Sahota, Atisha Tank, Ksenija Benes, Noorul Wahab, Fayyaz Minhas, Shan E Ahmed Raza, Hesham El Daly, Kishore Gopalakrishnan, David Snead, Nasir Rajpoot
The development of deep segmentation models for computational pathology (CPath) can help foster the investigation of interpretable morphological biomarkers.
1 code implementation • 29 Jun 2021 • Neda Zamanitajeddin, Mostafa Jahanifar, Nasir Rajpoot
To tackle these challenges, we propose to use a statistical network analysis method to describe the complex structure of the tissue micro-environment by modelling nuclei and their connections as a network.
no code implementations • 25 Jun 2021 • Noorul Wahab, Islam M Miligy, Katherine Dodd, Harvir Sahota, Michael Toss, Wenqi Lu, Mostafa Jahanifar, Mohsin Bilal, Simon Graham, Young Park, Giorgos Hadjigeorghiou, Abhir Bhalerao, Ayat Lashen, Asmaa Ibrahim, Ayaka Katayama, Henry O Ebili, Matthew Parkin, Tom Sorell, Shan E Ahmed Raza, Emily Hero, Hesham Eldaly, Yee Wah Tsang, Kishore Gopalakrishnan, David Snead, Emad Rakha, Nasir Rajpoot, Fayyaz Minhas
The analyses reported in this work highlight best practice recommendations that can be used as annotation guidelines over the lifecycle of a CPath project.
no code implementations • 23 Nov 2020 • Mostafa Jahanifar, Neda Zamani Tajeddin, Meisam Hasani, Babak Shekarchi, Kamran Azema
This framework has two essential parts of tendon segmentation and classification.
5 code implementations • 29 May 2020 • Navid Alemi Koohbanani, Mostafa Jahanifar, Neda Zamani Tajadin, Nasir Rajpoot
As nuclei, cells and glands are fundamental objects for downstream analysis in computational pathology/cytology, in this paper we propose a simple CNN-based approach to speed up collecting annotations for these objects which requires minimum interaction from the annotator.
8 code implementations • 24 Mar 2020 • Jevgenij Gamper, Navid Alemi Koohbanani, Ksenija Benes, Simon Graham, Mostafa Jahanifar, Syed Ali Khurram, Ayesha Azam, Katherine Hewitt, Nasir Rajpoot
The emerging area of computational pathology (CPath) is ripe ground for the application of deep learning (DL) methods to healthcare due to the sheer volume of raw pixel data in whole-slide images (WSIs) of cancerous tissue slides.
no code implementations • 7 Sep 2019 • Mostafa Jahanifar, Navid Alemi Koohbanani, Nasir Rajpoot
Best performing nuclear segmentation methods are based on deep learning algorithms that require a large amount of annotated data.
no code implementations • 27 Aug 2019 • Navid Alemi Koohbanani, Mostafa Jahanifar, Ali Gooya, Nasir Rajpoot
Spectral clustering method is applied on the output of the last SpaNet, which utilizes the nuclear mask and the Gaussian-like detection map for determining the connected components and associated cluster identifiers, respectively.
no code implementations • 23 Sep 2018 • Mostafa Jahanifar, Neda Zamani Tajeddin, Navid Alemi Koohbanani, Ali Gooya, Nasir Rajpoot
Computer-aided diagnosis systems for classification of different type of skin lesions have been an active field of research in recent decades.
no code implementations • 22 Aug 2018 • Navid Alemi Koohababni, Mostafa Jahanifar, Ali Gooya, Nasir Rajpoot
Nuclei detection is an important task in the histology domain as it is a main step toward further analysis such as cell counting, cell segmentation, study of cell connections, etc.
1 code implementation • 28 Feb 2017 • Mostafa Jahanifar, Neda Zamani Tajeddin, Babak Mohammadzadeh Asl, Ali Gooya
In order to detect the lesion in the presence of these problems, we propose a supervised saliency detection method tailored for dermoscopic images based on the discriminative regional feature integration (DRFI).