no code implementations • 6 May 2024 • Lin Yang, Shawn Xu, Andrew Sellergren, Timo Kohlberger, Yuchen Zhou, Ira Ktena, Atilla Kiraly, Faruk Ahmed, Farhad Hormozdiari, Tiam Jaroensri, Eric Wang, Ellery Wulczyn, Fayaz Jamil, Theo Guidroz, Chuck Lau, Siyuan Qiao, Yun Liu, Akshay Goel, Kendall Park, Arnav Agharwal, Nick George, Yang Wang, Ryutaro Tanno, David G. T. Barrett, Wei-Hung Weng, S. Sara Mahdavi, Khaled Saab, Tao Tu, Sreenivasa Raju Kalidindi, Mozziyar Etemadi, Jorge Cuadros, Gregory Sorensen, Yossi Matias, Katherine Chou, Greg Corrado, Joelle Barral, Shravya Shetty, David Fleet, S. M. Ali Eslami, Daniel Tse, Shruthi Prabhakara, Cory McLean, Dave Steiner, Rory Pilgrim, Christopher Kelly, Shekoofeh Azizi, Daniel Golden
Building upon Gemini's multimodal models, we develop several models within the new Med-Gemini family that inherit core capabilities of Gemini and are optimized for medical use via fine-tuning with 2D and 3D radiology, histopathology, ophthalmology, dermatology and genomic data.
no code implementations • 2 Aug 2023 • Shawn Xu, Lin Yang, Christopher Kelly, Marcin Sieniek, Timo Kohlberger, Martin Ma, Wei-Hung Weng, Atilla Kiraly, Sahar Kazemzadeh, Zakkai Melamed, Jungyeon Park, Patricia Strachan, Yun Liu, Chuck Lau, Preeti Singh, Christina Chen, Mozziyar Etemadi, Sreenivasa Raju Kalidindi, Yossi Matias, Katherine Chou, Greg S. Corrado, Shravya Shetty, Daniel Tse, Shruthi Prabhakara, Daniel Golden, Rory Pilgrim, Krish Eswaran, Andrew Sellergren
In this work, we present an approach, which we call Embeddings for Language/Image-aligned X-Rays, or ELIXR, that leverages a language-aligned image encoder combined or grafted onto a fixed LLM, PaLM 2, to perform a broad range of chest X-ray tasks.
1 code implementation • Radiology 2022 • Andrew B. Sellergren, Christina Chen, Zaid Nabulsi, Yuanzhen Li, Aaron Maschinot, Aaron Sarna, Jenny Huang, Charles Lau, Sreenivasa Raju Kalidindi, Mozziyar Etemadi, Florencia Garcia-Vicente, David Melnick, Yun Liu, Krish Eswaran, Daniel Tse, Neeral Beladia, Dilip Krishnan, Shravya Shetty
Supervised contrastive learning enabled performance comparable to state-of-the-art deep learning models in multiple clinical tasks by using as few as 45 images and is a promising method for predictive modeling with use of small data sets and for predicting outcomes in shifting patient populations.
3 code implementations • 19 May 2022 • Shekoofeh Azizi, Laura Culp, Jan Freyberg, Basil Mustafa, Sebastien Baur, Simon Kornblith, Ting Chen, Patricia MacWilliams, S. Sara Mahdavi, Ellery Wulczyn, Boris Babenko, Megan Wilson, Aaron Loh, Po-Hsuan Cameron Chen, YuAn Liu, Pinal Bavishi, Scott Mayer McKinney, Jim Winkens, Abhijit Guha Roy, Zach Beaver, Fiona Ryan, Justin Krogue, Mozziyar Etemadi, Umesh Telang, Yun Liu, Lily Peng, Greg S. Corrado, Dale R. Webster, David Fleet, Geoffrey Hinton, Neil Houlsby, Alan Karthikesalingam, Mohammad Norouzi, Vivek Natarajan
These results suggest that REMEDIS can significantly accelerate the life-cycle of medical imaging AI development thereby presenting an important step forward for medical imaging AI to deliver broad impact.
no code implementations • 25 Jun 2021 • Wenjun Kou, Dustin A. Carlson, Alexandra J. Baumann, Erica N. Donnan, Jacob M. Schauer, Mozziyar Etemadi, John E. Pandolfino
This diagnostic approach on motility disordered using HRM was mirrored using a multi-stage modeling framework developed using a combination of various machine learning approaches.
no code implementations • 22 Oct 2020 • Zaid Nabulsi, Andrew Sellergren, Shahar Jamshy, Charles Lau, Edward Santos, Atilla P. Kiraly, Wenxing Ye, Jie Yang, Rory Pilgrim, Sahar Kazemzadeh, Jin Yu, Sreenivasa Raju Kalidindi, Mozziyar Etemadi, Florencia Garcia-Vicente, David Melnick, Greg S. Corrado, Lily Peng, Krish Eswaran, Daniel Tse, Neeral Beladia, Yun Liu, Po-Hsuan Cameron Chen, Shravya Shetty
To assess generalizability, we evaluated our system using 6 international datasets from India, China, and the United States.