1 code implementation • 9 Aug 2024 • Piotr Keller, Muhammad Dawood, Brinder Singh Chohan, Fayyaz ul Amir Afsar Minhas
Machine learning in computational pathology (CPath) often aggregates patch-level predictions from multi-gigapixel Whole Slide Images (WSIs) to generate WSI-level prediction scores for crucial tasks such as survival prediction and drug effect prediction.
1 code implementation • 10 Nov 2023 • Adam J Shephard, Mostafa Jahanifar, Ruoyu Wang, Muhammad Dawood, Simon Graham, Kastytis Sidlauskas, Syed Ali Khurram, Nasir M Rajpoot, Shan E Ahmed Raza
Tumour-infiltrating lymphocytes (TILs) are considered as a valuable prognostic markers in both triple-negative and human epidermal growth factor receptor 2 (HER2) positive breast cancer.
1 code implementation • 11 Mar 2023 • Simon Graham, Quoc Dang Vu, Mostafa Jahanifar, Martin Weigert, Uwe Schmidt, Wenhua Zhang, Jun Zhang, Sen yang, Jinxi Xiang, Xiyue Wang, Josef Lorenz Rumberger, Elias Baumann, Peter Hirsch, Lihao Liu, Chenyang Hong, Angelica I. Aviles-Rivero, Ayushi Jain, Heeyoung Ahn, Yiyu Hong, Hussam Azzuni, Min Xu, Mohammad Yaqub, Marie-Claire Blache, Benoît Piégu, Bertrand Vernay, Tim Scherr, Moritz Böhland, Katharina Löffler, Jiachen Li, Weiqin Ying, Chixin Wang, Dagmar Kainmueller, Carola-Bibiane Schönlieb, Shuolin Liu, Dhairya Talsania, Yughender Meda, Prakash Mishra, Muhammad Ridzuan, Oliver Neumann, Marcel P. Schilling, Markus Reischl, Ralf Mikut, Banban Huang, Hsiang-Chin Chien, Ching-Ping Wang, Chia-Yen Lee, Hong-Kun Lin, Zaiyi Liu, Xipeng Pan, Chu Han, Jijun Cheng, Muhammad Dawood, Srijay Deshpande, Raja Muhammad Saad Bashir, Adam Shephard, Pedro Costa, João D. Nunes, Aurélio Campilho, Jaime S. Cardoso, Hrishikesh P S, Densen Puthussery, Devika R G, Jiji C V, Ye Zhang, Zijie Fang, Zhifan Lin, Yongbing Zhang, Chunhui Lin, Liukun Zhang, Lijian Mao, Min Wu, Vi Thi-Tuong Vo, Soo-Hyung Kim, Taebum Lee, Satoshi Kondo, Satoshi Kasai, Pranay Dumbhare, Vedant Phuse, Yash Dubey, Ankush Jamthikar, Trinh Thi Le Vuong, Jin Tae Kwak, Dorsa Ziaei, Hyun Jung, Tianyi Miao, David Snead, Shan E Ahmed Raza, Fayyaz Minhas, Nasir M. Rajpoot
Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome.
1 code implementation • 23 Jan 2023 • Piotr Keller, Muhammad Dawood, Fayyaz ul Amir Afsar Minhas
How similar are two images?
1 code implementation • 28 Dec 2022 • Srijay Deshpande, Muhammad Dawood, Fayyaz Minhas, Nasir Rajpoot
Tissue image generation based on bespoke cellular layouts through the proposed framework allows users to generate different histological patterns from arbitrary topological arrangement of different types of cells.
1 code implementation • 23 Jun 2022 • Adam Shephard, Mostafa Jahanifar, Ruoyu Wang, Muhammad Dawood, Simon Graham, Kastytis Sidlauskas, Syed Ali Khurram, Nasir Rajpoot, Shan E Ahmed Raza
The Tumor InfiltratinG lymphocytes in breast cancER (TiGER) challenge, aims to assess the prognostic significance of computer-generated TILs scores for predicting survival as part of a Cox proportional hazards model.
no code implementations • 4 Mar 2022 • Muhammad Dawood, Raja Muhammad Saad Bashir, Srijay Deshpande, Manahil Raza, Adam Shephard
For the prediction of cellular composition with ALBRT on the preliminary test set, we achieved an overall $R^2$ score of 0. 53, consisting of 0. 84 for lymphocytes, 0. 70 for epithelial cells, 0. 70 for plasma and . 060 for eosinophils.
no code implementations • 23 Aug 2021 • Muhammad Dawood, Kim Branson, Nasir M. Rajpoot, Fayyaz ul Amir Afsar Minhas
"Is it possible to predict expression levels of different genes at a given spatial location in the routine histology image of a tumor section by modeling its stain absorption characteristics?"
1 code implementation • 18 Aug 2021 • Muhammad Dawood, Kim Branson, Nasir M. Rajpoot, Fayyaz ul Amir Afsar Minhas
Cellular composition prediction, i. e., predicting the presence and counts of different types of cells in the tumor microenvironment from a digitized image of a Hematoxylin and Eosin (H&E) stained tissue section can be used for various tasks in computational pathology such as the analysis of cellular topology and interactions, subtype prediction, survival analysis, etc.
no code implementations • 16 Nov 2018 • Amina Asif, Muhammad Dawood, Fayyaz ul Amir Afsar Minhas
Learning using privileged information (LUPI) is a powerful heterogenous feature space machine learning framework that allows a machine learning model to learn from highly informative or privileged features which are available during training only to generate test predictions using input space features which are available both during training and testing.