no code implementations • 14 May 2022 • Hengcan Shi, Munawar Hayat, Jianfei Cai
Effectively encoding multi-scale contextual information is crucial for accurate semantic segmentation.
2 code implementations • 11 May 2022 • Yawei Li, Kai Zhang, Radu Timofte, Luc van Gool, Fangyuan Kong, Mingxi Li, Songwei Liu, Zongcai Du, Ding Liu, Chenhui Zhou, Jingyi Chen, Qingrui Han, Zheyuan Li, Yingqi Liu, Xiangyu Chen, Haoming Cai, Yu Qiao, Chao Dong, Long Sun, Jinshan Pan, Yi Zhu, Zhikai Zong, Xiaoxiao Liu, Zheng Hui, Tao Yang, Peiran Ren, Xuansong Xie, Xian-Sheng Hua, Yanbo Wang, Xiaozhong Ji, Chuming Lin, Donghao Luo, Ying Tai, Chengjie Wang, Zhizhong Zhang, Yuan Xie, Shen Cheng, Ziwei Luo, Lei Yu, Zhihong Wen, Qi Wu1, Youwei Li, Haoqiang Fan, Jian Sun, Shuaicheng Liu, Yuanfei Huang, Meiguang Jin, Hua Huang, Jing Liu, Xinjian Zhang, Yan Wang, Lingshun Long, Gen Li, Yuanfan Zhang, Zuowei Cao, Lei Sun, Panaetov Alexander, Yucong Wang, Minjie Cai, Li Wang, Lu Tian, Zheyuan Wang, Hongbing Ma, Jie Liu, Chao Chen, Yidong Cai, Jie Tang, Gangshan Wu, Weiran Wang, Shirui Huang, Honglei Lu, Huan Liu, Keyan Wang, Jun Chen, Shi Chen, Yuchun Miao, Zimo Huang, Lefei Zhang, Mustafa Ayazoğlu, Wei Xiong, Chengyi Xiong, Fei Wang, Hao Li, Ruimian Wen, Zhijing Yang, Wenbin Zou, Weixin Zheng, Tian Ye, Yuncheng Zhang, Xiangzhen Kong, Aditya Arora, Syed Waqas Zamir, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Dandan Gaoand Dengwen Zhouand Qian Ning, Jingzhu Tang, Han Huang, YuFei Wang, Zhangheng Peng, Haobo Li, Wenxue Guan, Shenghua Gong, Xin Li, Jun Liu, Wanjun Wang, Dengwen Zhou, Kun Zeng, Hanjiang Lin, Xinyu Chen, Jinsheng Fang
The aim was to design a network for single image super-resolution that achieved improvement of efficiency measured according to several metrics including runtime, parameters, FLOPs, activations, and memory consumption while at least maintaining the PSNR of 29. 00dB on DIV2K validation set.
1 code implementation • 19 Apr 2022 • Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, Ling Shao
In the former case, spatial details are preserved but the contextual information cannot be precisely encoded.
no code implementations • 13 Apr 2022 • Zhixi Cai, Kalin Stefanov, Abhinav Dhall, Munawar Hayat
Due to its high societal impact, deepfake detection is getting active attention in the computer vision community.
1 code implementation • CVPR 2022 • Duo Peng, Yinjie Lei, Munawar Hayat, Yulan Guo, Wen Li
In this paper, we address domain generalized semantic segmentation, where a segmentation model is trained to be domain-invariant without using any target domain data.
1 code implementation • CVPR 2022 • Zhao Jin, Yinjie Lei, Naveed Akhtar, Haifeng Li, Munawar Hayat
With that, we develop a large-scale synthetic scene flow dataset GTA-SF.
1 code implementation • 24 Jan 2022 • Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat, Fahad Shahbaz Khan, Huazhu Fu
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators.
no code implementations • 18 Jan 2022 • Hengcan Shi, Munawar Hayat, Jianfei Cai
To avoid the laborious annotation in conventional referring grounding, unpaired referring grounding is introduced, where the training data only contains a number of images and queries without correspondences.
no code implementations • CVPR 2022 • Hengcan Shi, Munawar Hayat, Yicheng Wu, Jianfei Cai
Firstly, we analyze CLIP for unsupervised open-category proposal generation and design an objectness score based on our empirical analysis on proposal selection.
1 code implementation • 26 Nov 2021 • Himashi Peiris, Munawar Hayat, Zhaolin Chen, Gary Egan, Mehrtash Harandi
This paper presents a Transformer architecture for volumetric medical image segmentation.
6 code implementations • CVPR 2022 • Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang
Since convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data, these models have been extensively applied to image restoration and related tasks.
Ranked #1 on
Single Image Deraining
on Test1200
no code implementations • 23 Oct 2021 • Shreya Ghosh, Munawar Hayat, Abhinav Dhall, Jarrod Knibbe
Our proposed framework outperforms the unsupervised state-of-the-art on CAVE (by 6. 43%) and even supervised state-of-the-art methods on Gaze360 (by 6. 59%) datasets.
1 code implementation • 12 Aug 2021 • Shreya Ghosh, Abhinav Dhall, Munawar Hayat, Jarrod Knibbe, Qiang Ji
Eye gaze analysis is an important research problem in the field of Computer Vision and Human-Computer Interaction.
1 code implementation • NeurIPS 2021 • Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang
We show and analyze the following intriguing properties of ViT: (a) Transformers are highly robust to severe occlusions, perturbations and domain shifts, e. g., retain as high as 60% top-1 accuracy on ImageNet even after randomly occluding 80% of the image content.
2 code implementations • ICCV 2021 • Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Fatih Porikli
To this end, we propose a new objective function that not only aligns the global distributions of source and target images, but also matches the local neighbourhood structure between the two domains.
1 code implementation • ICCV 2021 • Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, Fahad Shahbaz Khan
The CE loss encourages features of a class to have a higher projection score on the true class-vector compared to the negative classes.
6 code implementations • CVPR 2021 • Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, Ling Shao
At each stage, we introduce a novel per-pixel adaptive design that leverages in-situ supervised attention to reweight the local features.
Ranked #3 on
Single Image Deraining
on Rain100H
no code implementations • 4 Jan 2021 • Aditya Arora, Muhammad Haris, Syed Waqas Zamir, Munawar Hayat, Fahad Shahbaz Khan, Ling Shao, Ming-Hsuan Yang
These contexts can be crucial towards inferring several image enhancement tasks, e. g., local and global contrast, brightness and color corrections; which requires cues from both local and global spatial extent.
no code implementations • 4 Jan 2021 • Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, Mubarak Shah
Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems.
1 code implementation • ICCV 2021 • Sanath Narayan, Hisham Cholakkal, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, Ling Shao
The proposed formulation comprises a discriminative and a denoising loss term for enhancing temporal action localization.
Ranked #2 on
Weakly Supervised Action Localization
on THUMOS’14
no code implementations • 19 Oct 2020 • Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Mubarak Shah
This demonstrates their ability to acquire transferable knowledge, a capability that is central to human learning.
1 code implementation • 19 Oct 2020 • Nasir Hayat, Munawar Hayat, Shafin Rahman, Salman Khan, Syed Waqas Zamir, Fahad Shahbaz Khan
The existing zero-shot detection approaches project visual features to the semantic domain for seen objects, hoping to map unseen objects to their corresponding semantics during inference.
Ranked #1 on
Zero-Shot Object Detection
on PASCAL VOC'07
no code implementations • 25 Sep 2020 • Pengxu Wei, Hannan Lu, Radu Timofte, Liang Lin, WangMeng Zuo, Zhihong Pan, Baopu Li, Teng Xi, Yanwen Fan, Gang Zhang, Jingtuo Liu, Junyu Han, Errui Ding, Tangxin Xie, Liang Cao, Yan Zou, Yi Shen, Jialiang Zhang, Yu Jia, Kaihua Cheng, Chenhuan Wu, Yue Lin, Cen Liu, Yunbo Peng, Xueyi Zou, Zhipeng Luo, Yuehan Yao, Zhenyu Xu, Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Tongtong Zhao, Shanshan Zhao, Yoseob Han, Byung-Hoon Kim, JaeHyun Baek, HaoNing Wu, Dejia Xu, Bo Zhou, Wei Guan, Xiaobo Li, Chen Ye, Hao Li, Yukai Shi, Zhijing Yang, Xiaojun Yang, Haoyu Zhong, Xin Li, Xin Jin, Yaojun Wu, Yingxue Pang, Sen Liu, Zhi-Song Liu, Li-Wen Wang, Chu-Tak Li, Marie-Paule Cani, Wan-Chi Siu, Yuanbo Zhou, Rao Muhammad Umer, Christian Micheloni, Xiaofeng Cong, Rajat Gupta, Keon-Hee Ahn, Jun-Hyuk Kim, Jun-Ho Choi, Jong-Seok Lee, Feras Almasri, Thomas Vandamme, Olivier Debeir
This paper introduces the real image Super-Resolution (SR) challenge that was part of the Advances in Image Manipulation (AIM) workshop, held in conjunction with ECCV 2020.
1 code implementation • 29 Jul 2020 • Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Fatih Porikli
In contrast to existing adversarial training methods that only use class-boundary information (e. g., using a cross entropy loss), we propose to exploit additional information from the feature space to craft stronger adversaries that are in turn used to learn a robust model.
1 code implementation • 17 Jun 2020 • Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Mubarak Shah
Our experiments show that, even in the first stage, self-supervision can outperform current state-of-the-art methods, with further gains achieved by our second stage distillation process.
Ranked #10 on
Few-Shot Image Classification
on FC100 5-way (5-shot)
1 code implementation • CVPR 2020 • Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Fatih Porikli
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems e. g., for classification, segmentation and object detection.
1 code implementation • CVPR 2020 • Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Mubarak Shah
In this paper, we hypothesize this problem can be avoided by learning a set of generalized parameters, that are neither specific to old nor new tasks.
6 code implementations • CVPR 2020 • Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, Ling Shao
This is mainly because the AWGN is not adequate for modeling the real camera noise which is signal-dependent and heavily transformed by the camera imaging pipeline.
Ranked #9 on
Image Denoising
on DND
(using extra training data)
11 code implementations • ECCV 2020 • Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, Ling Shao
With the goal of recovering high-quality image content from its degraded version, image restoration enjoys numerous applications, such as in surveillance, computational photography, medical imaging, and remote sensing.
Ranked #4 on
Image Denoising
on DND
2 code implementations • CVPR 2022 • Prateek Munjal, Nasir Hayat, Munawar Hayat, Jamshid Sourati, Shadab Khan
Finally, we conclude with a set of recommendations on how to assess the results using a new AL algorithm to ensure results are reproducible and robust under changes in experimental conditions.
1 code implementation • NeurIPS 2019 • Jathushan Rajasegaran, Munawar Hayat, Salman H. Khan, Fahad Shahbaz Khan, Ling Shao
In order to maintain an equilibrium between previous and newly acquired knowledge, we propose a simple controller to dynamically balance the model plasticity.
Ranked #7 on
Continual Learning
on F-CelebA (10 tasks)
no code implementations • ICCV 2019 • Munawar Hayat, Salman Khan, Syed Waqas Zamir, Jianbing Shen, Ling Shao
Real-world object classes appear in imbalanced ratios.
no code implementations • CVPR 2019 • Salman H. Khan, Yulan Guo, Munawar Hayat, Nick Barnes
Using the primitive parts for shapes as attributes, a parameterized 3D representation is modeled in the first stage.
1 code implementation • 3 Jun 2019 • Jathushan Rajasegaran, Munawar Hayat, Salman Khan, Fahad Shahbaz Khan, Ling Shao, Ming-Hsuan Yang
In a conventional supervised learning setting, a machine learning model has access to examples of all object classes that are desired to be recognized during the inference stage.
Ranked #7 on
Incremental Learning
on ImageNet100 - 10 steps
(Average Incremental Accuracy Top-5 metric)
no code implementations • 8 Apr 2019 • Bilal Taha, Munawar Hayat, Stefano Berretti, Naoufel Werghi
Our approach defines an inverse mapping between different geometric descriptors computed on the mesh surface or its down-sampled version, and the corresponding 2D texture image of the mesh, allowing the construction of fused geometrically augmented images (FGAI).
1 code implementation • ICCV 2019 • Aamir Mustafa, Salman Khan, Munawar Hayat, Roland Goecke, Jianbing Shen, Ling Shao
Deep neural networks are vulnerable to adversarial attacks, which can fool them by adding minuscule perturbations to the input images.
Ranked #4 on
Adversarial Defense
on CIFAR-10
1 code implementation • 23 Jan 2019 • Munawar Hayat, Salman Khan, Waqas Zamir, Jianbing Shen, Ling Shao
Real-world object classes appear in imbalanced ratios.
no code implementations • CVPR 2019 • Salman Khan, Munawar Hayat, Waqas Zamir, Jianbing Shen, Ling Shao
Rare classes tend to get a concentrated representation in the classification space which hampers the generalization of learned boundaries to new test examples.
1 code implementation • 7 Jan 2019 • Aamir Mustafa, Salman H. Khan, Munawar Hayat, Jianbing Shen, Ling Shao
The proposed scheme is simple and has the following advantages: (1) it does not require any model training or parameter optimization, (2) it complements other existing defense mechanisms, (3) it is agnostic to the attacked model and attack type and (4) it provides superior performance across all popular attack algorithms.
1 code implementation • 27 Apr 2018 • Salman H. Khan, Munawar Hayat, Nick Barnes
Our model simultaneously learns to match the data, reconstruction loss and the latent distributions of real and fake images to improve the quality of generated samples.
no code implementations • 23 Nov 2017 • Salman Khan, Munawar Hayat, Fatih Porikli
We cast the proposed approach in the form of regular Convolutional Neural Network (CNN) weight layers using a decorrelation transform with fixed basis functions.
no code implementations • ICCV 2017 • Salman H. Khan, Munawar Hayat, Fatih Porikli
To the best of our knowledge, this is the first attempt to use deep learning based spectral features explicitly for image classification task.
no code implementations • CVPR 2017 • Munawar Hayat, Salman H. Khan, Naoufel Werghi, Roland Goecke
We validate the proposed scheme on template based unconstrained face identification.
no code implementations • ICCV 2015 • Senjian An, Munawar Hayat, Salman H. Khan, Mohammed Bennamoun, Farid Boussaid, Ferdous Sohel
The contractive constraints ensure that the achieved separating margin in the input space is larger than or equal to the separating margin in the output layer.
no code implementations • 14 Aug 2015 • Salman H. Khan, Munawar Hayat, Mohammed Bennamoun, Ferdous Sohel, Roberto Togneri
Class imbalance is a common problem in the case of real-world object detection and classification tasks.
no code implementations • 18 Jun 2015 • Munawar Hayat, Salman H. Khan, Mohammed Bennamoun, Senjian An
This paper introduces a new learnable feature descriptor called "spatial layout and scale invariant convolutional activations" to deal with these challenges.
no code implementations • 17 Jun 2015 • Salman H. Khan, Munawar Hayat, Mohammed Bennamoun, Roberto Togneri, Ferdous Sohel
To this end, we introduce a new large-scale dataset of 1300 object categories which are commonly present in indoor scenes.
no code implementations • CVPR 2014 • Munawar Hayat, Mohammed Bennamoun, Senjian An
We propose a deep learning framework for image set classification with application to face recognition.