Given a set of uncertain elements and a family of $m$ subsets of that set, we present an algorithm for determining the value of the minimum of each of the subsets that requires at most $(2+\varepsilon) \cdot \mathrm{opt}_k+\mathrm{O}\left(\frac{1}{\varepsilon} \cdot \lg m\right)$ rounds for every $0<\varepsilon<1$, where $\mathrm{opt}_k$ is the optimal number of rounds, as well as nearly matching lower bounds.

Data Structures and Algorithms

We present a unified adaptive strategy for uniform costs that yields the following improved results: (1) a 3/2-competitive randomized algorithm; (2) a 5/3-competitive deterministic algorithm if the dependency graph has no 2-components after some preprocessing, which has competitive ratio $3/2+\mathrm{O}(1/k)$ if the components obtained have size at least $k$; and (3) an exact algorithm for laminar families of intervals.

Data Structures and Algorithms

Cannot find the paper you are looking for? You can
Submit a new open access paper.