Search Results for author: Nancy R. Newlin

Found 6 papers, 2 papers with code

Brain age identification from diffusion MRI synergistically predicts neurodegenerative disease

1 code implementation29 Oct 2024 Chenyu Gao, Michael E. Kim, Karthik Ramadass, Praitayini Kanakaraj, Aravind R. Krishnan, Adam M. Saunders, Nancy R. Newlin, Ho Hin Lee, Qi Yang, Warren D. Taylor, Brian D. Boyd, Lori L. Beason-Held, Susan M. Resnick, Lisa L. Barnes, David A. Bennett, Katherine D. Van Schaik, Derek B. Archer, Timothy J. Hohman, Angela L. Jefferson, Ivana Išgum, Daniel Moyer, Yuankai Huo, Kurt G. Schilling, Lianrui Zuo, Shunxing Bao, Nazirah Mohd Khairi, Zhiyuan Li, Christos Davatzikos, Bennett A. Landman

We observe difference between our dMRI-based brain age and T1w MRI-based brain age across stages of neurodegeneration, with dMRI-based brain age being older than T1w MRI-based brain age in participants transitioning from cognitively normal (CN) to mild cognitive impairment (MCI), but younger in participants already diagnosed with Alzheimer's disease (AD).

Age Estimation Diffusion MRI +1

Sensitivity of quantitative diffusion MRI tractography and microstructure to anisotropic spatial sampling

no code implementations26 Sep 2024 Elyssa M. McMaster, Nancy R. Newlin, Chloe Cho, Gaurav Rudravaram, Adam M. Saunders, Aravind R. Krishnan, Lucas W. Remedios, Michael E. Kim, Hanliang Xu, Kurt G. Schilling, François Rheault, Laurie E. Cutting, Bennett A. Landman

This study uses microstructural measures (fractional anisotropy and mean diffusivity) and white matter bundle properties (bundle volume, length, and surface area) to further understand the effect of anisotropic voxels on microstructure and tractography.

Diffusion MRI

Multi-Modality Conditioned Variational U-Net for Field-of-View Extension in Brain Diffusion MRI

no code implementations20 Sep 2024 Zhiyuan Li, Tianyuan Yao, Praitayini Kanakaraj, Chenyu Gao, Shunxing Bao, Lianrui Zuo, Michael E. Kim, Nancy R. Newlin, Gaurav Rudravaram, Nazirah M. Khairi, Yuankai Huo, Kurt G. Schilling, Walter A. Kukull, Arthur W. Toga, Derek B. Archer, Timothy J. Hohman, Bennett A. Landman

We hypothesize that by this design the proposed framework can enhance the imputation performance of the dMRI scans and therefore be useful for repairing whole-brain tractography in corrupted dMRI scans with incomplete FOV.

Diffusion MRI Imputation

Cannot find the paper you are looking for? You can Submit a new open access paper.