no code implementations • 18 Nov 2024 • Alejandro Hernandez, Levin Brinkmann, Ignacio Serna, Nasim Rahaman, Hassan Abu Alhaija, Hiromu Yakura, Mar Canet Sola, Bernhard Schölkopf, Iyad Rahwan
Our research hypothesizes that visual art contains a vast unexplored space of conceptual combinations, constrained not by inherent incompatibility, but by cognitive limitations imposed by artists' cultural, temporal, geographical and social contexts.
no code implementations • 21 Mar 2024 • Nasim Rahaman, Martin Weiss, Manuel Wüthrich, Yoshua Bengio, Li Erran Li, Chris Pal, Bernhard Schölkopf
This work addresses the buyer's inspection paradox for information markets.
1 code implementation • 14 Jun 2023 • Aaron Spieler, Nasim Rahaman, Georg Martius, Bernhard Schölkopf, Anna Levina
Biological cortical neurons are remarkably sophisticated computational devices, temporally integrating their vast synaptic input over an intricate dendritic tree, subject to complex, nonlinearly interacting internal biological processes.
Ranked #1 on Time Series on neuronIO
no code implementations • 4 Nov 2022 • Nasim Rahaman, Martin Weiss, Frederik Träuble, Francesco Locatello, Alexandre Lacoste, Yoshua Bengio, Chris Pal, Li Erran Li, Bernhard Schölkopf
Geospatial Information Systems are used by researchers and Humanitarian Assistance and Disaster Response (HADR) practitioners to support a wide variety of important applications.
no code implementations • 14 Oct 2022 • Nasim Rahaman, Martin Weiss, Francesco Locatello, Chris Pal, Yoshua Bengio, Bernhard Schölkopf, Li Erran Li, Nicolas Ballas
Recent work has seen the development of general purpose neural architectures that can be trained to perform tasks across diverse data modalities.
1 code implementation • 22 Jul 2022 • Frederik Träuble, Anirudh Goyal, Nasim Rahaman, Michael Mozer, Kenji Kawaguchi, Yoshua Bengio, Bernhard Schölkopf
Deep neural networks perform well on classification tasks where data streams are i. i. d.
no code implementations • NeurIPS 2021 • Nasim Rahaman, Muhammad Waleed Gondal, Shruti Joshi, Peter Gehler, Yoshua Bengio, Francesco Locatello, Bernhard Schölkopf
Modern neural network architectures can leverage large amounts of data to generalize well within the training distribution.
1 code implementation • ICLR 2022 • Anirudh Goyal, Aniket Didolkar, Alex Lamb, Kartikeya Badola, Nan Rosemary Ke, Nasim Rahaman, Jonathan Binas, Charles Blundell, Michael Mozer, Yoshua Bengio
We explore the use of such a communication channel in the context of deep learning for modeling the structure of complex environments.
no code implementations • ICLR 2021 • Nasim Rahaman, Anirudh Goyal, Muhammad Waleed Gondal, Manuel Wuthrich, Stefan Bauer, Yash Sharma, Yoshua Bengio, Bernhard Schölkopf
Capturing the structure of a data-generating process by means of appropriate inductive biases can help in learning models that generalise well and are robust to changes in the input distribution.
no code implementations • 30 Oct 2020 • Prateek Gupta, Tegan Maharaj, Martin Weiss, Nasim Rahaman, Hannah Alsdurf, Abhinav Sharma, Nanor Minoyan, Soren Harnois-Leblanc, Victor Schmidt, Pierre-Luc St. Charles, Tristan Deleu, Andrew Williams, Akshay Patel, Meng Qu, Olexa Bilaniuk, Gaétan Marceau Caron, Pierre Luc Carrier, Satya Ortiz-Gagné, Marc-Andre Rousseau, David Buckeridge, Joumana Ghosn, Yang Zhang, Bernhard Schölkopf, Jian Tang, Irina Rish, Christopher Pal, Joanna Merckx, Eilif B. Muller, Yoshua Bengio
The rapid global spread of COVID-19 has led to an unprecedented demand for effective methods to mitigate the spread of the disease, and various digital contact tracing (DCT) methods have emerged as a component of the solution.
1 code implementation • ICLR 2021 • Yoshua Bengio, Prateek Gupta, Tegan Maharaj, Nasim Rahaman, Martin Weiss, Tristan Deleu, Eilif Muller, Meng Qu, Victor Schmidt, Pierre-Luc St-Charles, Hannah Alsdurf, Olexa Bilanuik, David Buckeridge, Gáetan Marceau Caron, Pierre-Luc Carrier, Joumana Ghosn, Satya Ortiz-Gagne, Chris Pal, Irina Rish, Bernhard Schölkopf, Abhinav Sharma, Jian Tang, Andrew Williams
Predictions are used to provide personalized recommendations to the individual via an app, as well as to send anonymized messages to the individual's contacts, who use this information to better predict their own infectiousness, an approach we call proactive contact tracing (PCT).
no code implementations • 14 Oct 2020 • Muhammad Waleed Gondal, Shruti Joshi, Nasim Rahaman, Stefan Bauer, Manuel Wüthrich, Bernhard Schölkopf
This \emph{meta-representation}, which is computed from a few observed examples of the underlying function, is learned jointly with the predictive model.
no code implementations • 28 Sep 2020 • Muhammad Waleed Gondal, Shruti Joshi, Nasim Rahaman, Stefan Bauer, Manuel Wuthrich, Bernhard Schölkopf
Few-shot-learning seeks to find models that are capable of fast-adaptation to novel tasks which are not encountered during training.
no code implementations • 13 Jul 2020 • Nasim Rahaman, Anirudh Goyal, Muhammad Waleed Gondal, Manuel Wuthrich, Stefan Bauer, Yash Sharma, Yoshua Bengio, Bernhard Schölkopf
Capturing the structure of a data-generating process by means of appropriate inductive biases can help in learning models that generalize well and are robust to changes in the input distribution.
no code implementations • 18 May 2020 • Hannah Alsdurf, Edmond Belliveau, Yoshua Bengio, Tristan Deleu, Prateek Gupta, Daphne Ippolito, Richard Janda, Max Jarvie, Tyler Kolody, Sekoul Krastev, Tegan Maharaj, Robert Obryk, Dan Pilat, Valerie Pisano, Benjamin Prud'homme, Meng Qu, Nasim Rahaman, Irina Rish, Jean-Francois Rousseau, Abhinav Sharma, Brooke Struck, Jian Tang, Martin Weiss, Yun William Yu
Manual contact tracing of Covid-19 cases has significant challenges that limit the ability of public health authorities to minimize community infections.
no code implementations • ICLR 2020 • Nasim Rahaman, Steffen Wolf, Anirudh Goyal, Roman Remme, Yoshua Bengio
We humans have an innate understanding of the asymmetric progression of time, which we use to efficiently and safely perceive and manipulate our environment.
no code implementations • 2 Jul 2019 • Nasim Rahaman, Steffen Wolf, Anirudh Goyal, Roman Remme, Yoshua Bengio
We humans seem to have an innate understanding of the asymmetric progression of time, which we use to efficiently and safely perceive and manipulate our environment.
no code implementations • 25 Apr 2019 • Steffen Wolf, Alberto Bailoni, Constantin Pape, Nasim Rahaman, Anna Kreshuk, Ullrich Köthe, Fred A. Hamprecht
Unlike seeded watershed, the algorithm can accommodate not only attractive but also repulsive cues, allowing it to find a previously unspecified number of segments without the need for explicit seeds or a tunable threshold.
2 code implementations • ICLR 2020 • Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Rosemary Ke, Sébastien Lachapelle, Olexa Bilaniuk, Anirudh Goyal, Christopher Pal
We show that causal structures can be parameterized via continuous variables and learned end-to-end.
no code implementations • ECCV 2018 • Steffen Wolf, Constantin Pape, Alberto Bailoni, Nasim Rahaman, Anna Kreshuk, Ullrich Kothe, FredA. Hamprecht
Image partitioning, or segmentation without semantics, is the task of decomposing an image into distinct segments; or equivalently, the task of detecting closed contours in an image.
2 code implementations • ICLR 2019 • Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A. Hamprecht, Yoshua Bengio, Aaron Courville
Neural networks are known to be a class of highly expressive functions able to fit even random input-output mappings with $100\%$ accuracy.