2 code implementations • 13 Feb 2025 • Max Rudolph, Nathan Lichtle, Sobhan Mohammadpour, Alexandre Bayen, J. Zico Kolter, Amy Zhang, Gabriele Farina, Eugene Vinitsky, Samuel Sokota
In the past decade, motivated by the putative failure of naive self-play deep reinforcement learning (DRL) in adversarial imperfect-information games, researchers have developed numerous DRL algorithms based on fictitious play (FP), double oracle (DO), and counterfactual regret minimization (CFR).
1 code implementation • 30 Oct 2020 • Eugene Vinitsky, Nathan Lichtle, Kanaad Parvate, Alexandre Bayen
We apply multi-agent reinforcement algorithms to this problem and demonstrate that significant improvements in bottleneck throughput, from 20\% at a 5\% penetration rate to 33\% at a 40\% penetration rate, can be achieved.